K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

Ta có: $S_{ABC}=\frac{h_a.a}{2}$

$S_{ABC}=\sqrt{p(p-a)(p-b)(p-c)}$ theo công thức Heron.

$\Rightarrow \frac{h_a.a}{2}=\sqrt{p(p-a)(p-b)(p-c)}$

$\Leftrightarrow \frac{a\sqrt{p(p-a)}}{2}=\sqrt{p(p-a)(p-b)(p-c)}$

$\Leftrightarrow \frac{a}{2}=\sqrt{(p-b)(p-c)}$

$\Rightarrow \frac{a}{2}=\frac{1}{2}\sqrt{(a+c-b)(a+b-c)}$

$\Rightarrow a^2=(a+c-b)(a+b-c)$$\Leftrightarrow a^2=a^2-(b-c)^2\Rightarrow (b-c)^2=0$

$\Rightarrow b=c$ hay $ABC$ là tam giác cân.

12 tháng 1 2021

Bạn đùa tôi à

22 tháng 12 2023

a: \(\overrightarrow{AE}=\dfrac{2}{3}\overrightarrow{EC}\)

=>E nằm giữa A và C và AE=2/3EC

Ta có: AE+EC=AC(E nằm giữa A và C)

=>\(AC=\dfrac{2}{3}EC+EC=\dfrac{5}{3}EC\)

=>\(\dfrac{AE}{AC}=\dfrac{\dfrac{2}{3}EC}{\dfrac{5}{3}EC}=\dfrac{2}{3}:\dfrac{5}{3}=\dfrac{2}{5}\)

=>\(AE=\dfrac{2}{5}AC\)

=>\(\overrightarrow{AE}=\dfrac{2}{5}\cdot\overrightarrow{AC}\)

\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}\)

\(=-\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC}\)

b: \(\left|\overrightarrow{IA}+\overrightarrow{IG}\right|=\left|\overrightarrow{IA}-\overrightarrow{IG}\right|\)

=>\(\left[{}\begin{matrix}\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IA}-\overrightarrow{IG}\\\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IG}-\overrightarrow{IA}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2\cdot\overrightarrow{IG}=\overrightarrow{0}\\2\cdot\overrightarrow{IA}=\overrightarrow{0}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}I\equiv G\\I\equiv A\end{matrix}\right.\)

6 tháng 5 2022

\(\cos2A+\cos2B+\cos2C=-1\)

\(\Leftrightarrow\cos2A+\cos2B+\cos2C+1=0\)

\(\Leftrightarrow2\cos\left(A+B\right)\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow2\cos\left(180^0-C\right)\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow-2\cos C\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow-2\cos C(\cos\left(A-B\right)-\cos C)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos C=0\\\cos\left(A-B\right)=\cos C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A-B=C\\A-B=-C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A=B+C\\A+C=B\end{matrix}\right.\)

Nếu \(A=B+C\Rightarrow A=B+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại A.

Nếu \(B=A+C\Rightarrow B=A+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại B.

Vậy, nếu \(\cos2A+\cos2B+\cos2C=-1\) thì tam giác ABC là tam giác vuông.

 
NV
26 tháng 12 2020

a.

\(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CM}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{BM}\)

b.

\(\overrightarrow{AE}=3\overrightarrow{EM}=3\overrightarrow{EA}+3\overrightarrow{AM}\Rightarrow4\overrightarrow{AE}=3\overrightarrow{AM}\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\overrightarrow{AM}\)

\(\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=-\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}=-\dfrac{5}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=-\overrightarrow{AB}+\dfrac{3}{5}\overrightarrow{AC}=\dfrac{8}{5}\overrightarrow{BE}\)

\(\Rightarrow\) B, E, K thẳng hàng

ai giúp mình câu b với 

29 tháng 12 2021

a: \(AB=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-1-2\right)^2}=5\)

\(BC=\sqrt{\left(5-2\right)^2+\left(3+1\right)^2}=5\)

Do đó: AB=BC

hay ΔABC cân tại B