Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta thấy số sau bằng tổng của số trước với 3, do đó 2 số tiếp theo để điền vào dãy là: ...;16;19
Ta có 7 số đầu tiên trong dãy là: \(1;4;7;10;13;16;19\)
Nên: tổng của chúng = ((số đầu + số cuối)*số số hạng)/2 \(=\frac{\left(1+19\right)\cdot7}{2}=70\)
b/ Theo quy luật của dãy ta có:
Số các số từ 1->2018 là: \(\left(2018-1\right)\div3+1=673,3333333\) ( không thỏa mãn, vì số các số\(\inℕ^∗\) )
Vì theo quy luật của dãy số ta không tìm được số các số từ 1->2018 nên Số 2018 không nằm trong dãy số trên.
Ta có: \(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{x}\)
\(=\dfrac{1}{1.2};\dfrac{1}{2.3};\dfrac{1}{3.4};\dfrac{1}{4.5};...;\dfrac{1}{n\left(n+1\right)}\)
=> Số hạng thứ 100 và 2022 lần lượt là: \(\dfrac{1}{100.101}=\dfrac{1}{10100};\dfrac{1}{2022.2023}=\dfrac{1}{4090506}\)
Tổng 100 số hạng đầu tiên:
- Ta có: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...\)
\(\Rightarrow=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{100}+\dfrac{1}{100}\right)-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
-Dãy số tổng quát:
\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{n\left(n+1\right)}\)(n thuộc N*)
-Số hạng thứ 100 của dãy: \(\dfrac{1}{100\left(100+1\right)}=\dfrac{1}{10100}\)
-Số hạng thứ 2022 của dãy: \(\dfrac{1}{2022\left(2022+1\right)}=\dfrac{1}{4090506}\)
- Tổng 100 số hạng đầu tiên của dãy:
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{10100}\)=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
=\(1-\dfrac{1}{101}=\dfrac{100}{101}\)
a ; mỗi khoảng cách mỗi số cách nhau 5 đơn vị
b 22;27;32;37;42
c[ 100 - 1] x 5 + 2 = 497
a) \(A=\left(3214+24\right)+5765=3238+5765\)
\(B=5765+3238\)
Vậy \(A=B\)
b) \(A=2011\cdot\left(2012-1\right)=2011\cdot2012-2011\)
\(B=\left(2011-1\right)\cdot2012=2011\cdot2012-2012\)
Vậy \(A>B\)
a) Ta có: \(B=2010\cdot2012\)
\(B=\left(2011-1\right)\cdot\left(2011+1\right)\)
\(B=2011^2+2011-2011-1\)
\(B=2011^2-1< 2011^2=A\)
Vậy A > B
b) Ta có: \(A=2018\cdot2020\)
\(A=\left(2019-1\right)\cdot\left(2019+1\right)\)
\(A=2019^2+2019-2019-1\)
\(A=2019^2-1< 2019^2=B\)
Vậy B > A
a)
\(A=2011.2011=2011^2\)
\(B=2010.2012=\left(2011-1\right).\left(2011+1\right)=2011^2-1^2\)
\(\Rightarrow A>B\)(vì 2011^2>2011^2-1)
b)
\(A=2018.2020=\left(2019-1\right).\left(2019+1\right)=2019^2-1\)
\(B=2019.2019=2019^2\)
\(\Rightarrow A< B\)(vì 2019^2-1<2019^2