K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2015

giup minh voi sap phai nop roi

18 tháng 1 2018

câu a Achia hết cho 128

15 tháng 1 2018

cố gắng làm nhanh cho mk nha!!!

mk cảm mơn nhiều 

9 tháng 8 2018

b, \(B=5+5^2+5^3+5^4+...+5^{11}+5^{12}\)

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)

\(B=30+5^2\left(5+5^2\right)+...+5^{10}\left(5+5^2\right)\)

\(B=30+5^2\cdot30+...+5^{10}\cdot30\)

\(B=\left(1+5^2+...+5^{10}\right)\cdot30\)\(⋮30\)

+) \(B=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{10}+5^{11}+5^{12}\right)\)

\(B=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{10}\left(1+5+5^2\right)\)

\(B=5\cdot31+5^4\cdot31+...+5^{10}\cdot31\)

\(B=\left(5+5^4+...+5^{10}\right)\cdot31\)\(⋮31\)

24 tháng 10 2023

ko bt lm

 

17 tháng 12 2018

A=4+4^2+4^3+4^4+...+4^49+4^50

A=(4+4^2)+(4^3+4^4)+...+(4^49+4^50)

A=4.(1+4)+4^3.(1+4)+...+4^49.(1+4)

A=4.5+4^3.5+...+4^49.5

A=5.(4+4^3+...+4^49) chia het cho 5(vi 5 chia het cho 5)

=> A chia het cho 5

17 tháng 12 2018

\(A=4+4^2+4^3+4^4+...+4^{49}+4^{50}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{49}+4^{50}\right)\)

\(A=4.5+4^3.5+...+4^{49}.5\)

\(A=5.\left(4+4^3+...+4^{49}\right)CHIA-HETCHO5\)

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

17 tháng 8 2023

\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)

\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)

\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)

\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)

\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)

mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5

\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)

17 tháng 8 2023

\(B=4+4^2+4^3+...+4^{99}\)

\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)

\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)

\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)

\(\Rightarrow dpcm\)