K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Bạn ơi đề viết thừa số 2 rùi kìa 

a, A = (2^1+2^2+2^3)+(2^4+2^5+2^6)+....+(2^10+2^11+2^12)

       = 2.(1+2+2^2) + 2^4.(1+2+2^2) + .... + 2^10.(1+2+2^2)

       = 2.7 + 2^4.7 +....+ 2^10.7 = 7.(2+2^4+....+2^10) chia hết cho 7

b, Vì p nguyên tố > 3 nên p lẻ và p^2+1003 > 2

p lẻ nên p^2 lẻ => p^2 + 2003 chẵn => p^2+2003 là hợp số  ( vì p^2+2003 > 2 )

10 tháng 11 2017

a) A = 2+22+23+…+212 gồm có 12 số hạng, ta nhóm thành 4 nhóm, mỗi nhóm 3 số hạng,

vì mỗi nhóm chia hết cho 7 nên A chia hết cho 7

A = (2+22+23) +(24+25+26) + (27+28+29) +(210+211+212)

=2. (1+2+22) +24(1+2+22) +27(1+2+22) +210(1+2+22)

=2. 7 +24.7 +27.7 +210.7

b) Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ suy ra p2 cũng là số lẻ

p2 +2003 là một số chẵn lớn hơn 2 nên là hợp số

12 tháng 10 2016

a﴿ n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+﴿ n chia cho 3 dư 1 : n = 3k + 1 => n 2 = ﴾3k +1﴿.﴾3k +1﴿ = 9k 2 + 6k + 1 = 3.﴾3k 2 + 2k﴿ + 1 => n 2 chia cho 3 dư 1

+﴿ n chia cho 3 dư 2 => n = 3k + 2 => n 2 = ﴾3k +2﴿.﴾3k+2﴿ = 9k 2 + 12k + 4 = 3.﴾3k 2 + 4k +1﴿ + 1 => n 2 chia cho 3 dư 1

Vậy...

b﴿ p là số nguyên tố > 3 => p lẻ => p 2 lẻ => p 2 + 2003 chẵn => p 2 + 2003 là hợp số 

k minh nha

8 tháng 11 2017

Tran van thanh dung do

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

1
25 tháng 11 2024

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿

28 tháng 11 2016

a) sao lai hinh nhu sai?

p nguyen to chia het cho 3 => p  chi co the =3

3 nho hon 9=> 3 chia 9 =0 du 3

dpcm 

28 tháng 11 2016

Câu hỏi này câu a như bị sai đề,
Câu b
p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 suy ra \(p^2\) chia 3 dư 1.
Suy ra \(p^2+2003\) chia hết cho 3 ( do 2003 chia 3 dư 2)
Vậy \(p^2+2003\) là hợp số.

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?1, Số tận cùng là 4 thì chia hết cho 22, Số chia hết cho 2 thì có chữ số tận cùng là 43, Số chia hết cho 5 thì có chữ số tận cùng là 54, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 75, Số chia hết cho 9 có thể chia hết cho 36, Số chia hết cho 3 có thể chia hết cho 97, Nếu một số không chia hết...
Đọc tiếp

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

1, Số tận cùng là 4 thì chia hết cho 2

2, Số chia hết cho 2 thì có chữ số tận cùng là 4

3, Số chia hết cho 5 thì có chữ số tận cùng là 5

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7

5, Số chia hết cho 9 có thể chia hết cho 3

6, Số chia hết cho 3 có thể chia hết cho 9

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó

10, Hợp số là số tự nhiên nhiều hơn 2 ước

11, Một số nguyên tố đều là số lẻ

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố

16, Hai số nguyên tố là hai số nguyên tố cùng nhau 

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau 

1

1, Số tận cùng là 4 thì chia hết cho 2                            Đ

2, Số chia hết cho 2 thì có chữ số tận cùng là 4         Đ

3, Số chia hết cho 5 thì có chữ số tận cùng là 5         Đ

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7            S

5, Số chia hết cho 9 có thể chia hết cho 3                       Đ

6, Số chia hết cho 3 có thể chia hết cho 9                      S

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9               S

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r                  Đ

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó                    S

10, Hợp số là số tự nhiên nhiều hơn 2 ước                Đ

11, Một số nguyên tố đều là số lẻ                        S

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5                        S

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8              Đ

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số                 Đ

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố              Đ

16, Hai số nguyên tố là hai số nguyên tố cùng nhau                             S

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau                         S

ht