Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho HCl vào Z thấy có khi thoát ra → Z gồm KOH và K2CO3.
Gọi: \(\left\{{}\begin{matrix}n_{KOH}=x\left(mol\right)\\n_{K_2CO_3}=y\left(mol\right)\end{matrix}\right.\) (trong 1/2Z)
- Cho pư với Ca(HCO3)2:
\(HCO_3^-+OH^-\rightarrow CO_3^{2-}\)
__________x________x (mol)
\(Ca^{2+}+CO_3^{2-}\rightarrow CaCO_3\)
________x+y________x+y (mol)
\(\Rightarrow x+y=\dfrac{3}{100}=0,03\left(mol\right)\left(1\right)\)
- Cho pư với HCl.
\(H^++OH^-\rightarrow H_2O\)
x______x (mol)
\(H^++CO_3^{2-}\rightarrow HCO_3^-\)
y_______y________y (mol)
\(H^++HCO_3^-\rightarrow CO_2+H_2O\)
y_________y (mol)
⇒ nH+ = x + 2y = 0,2.2 = 0,04 (mol) (2)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=0,02\left(mol\right)\\y=0,01\left(mol\right)\end{matrix}\right.\)
→ Z gồm: 0,04 (mol) KOH và 0,02 (mol) K2CO3
BTNT K, có: nKHCO3 = nKOH + 2nK2CO3 = 0,08 (mol)
BTNT OH: nCa(OH)2 = 1/2nKOH = 0,02 (mol)
BTNT Ca: nCaCO3 = nCaO = nCa(OH)2 = 0,02 (mol)
⇒ m = 0,08.100 + 0,02.100 = 10 (g)
PTHH:
\(CaCO_3+2HCl\rightarrow CaCl_2+H_2O+CO_2\uparrow\)
0,15 0,15
\(CaO+2HCl\rightarrow CaCl_2+H_2O\)
Ta có: \(n_{CO_2}=\dfrac{3,36}{22,4}=0,15\left(mol\right)\)
\(\Rightarrow m_{CaCO_3}=0,15\cdot100=15\left(g\right)\)
\(\Rightarrow m_{CaO}=20,6-15=5,6\left(g\right)\)
\(\Rightarrow\%m_{CaCO_3}=\dfrac{15\cdot100}{20,6}\approx73\%\)
\(\Rightarrow\%m_{CaO}=100\%-73\%=27\%\)
a, \(n_{H_2SO_4}=0,45.0,2=0,09\left(mol\right)\)
PTHH: FeO + H2SO4 → FeSO4 + H2O
Mol: a a
PTHH: MgO + H2SO4 → MgSO4 + H2O
Mol: b b
Ta có: \(\left\{{}\begin{matrix}72a+40b=4,48\\a+b=0,09\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0,0275\\b=0,0625\end{matrix}\right.\)
\(\%m_{FeO}=\dfrac{0,0275.72.100\%}{4,48}=44,196\%\)
\(\%m_{MgO}=100-44,196=55,804\%\)
b,
PTHH: FeO + H2SO4 → FeSO4 + H2O
Mol: 0,0275 0,0275
PTHH: MgO + H2SO4 → MgSO4 + H2O
Mol: 0,0625 0,0625
\(C_{M_{ddFeSO_4}}=\dfrac{0,0275}{0,2}=0,1375M\)
\(C_{M_{ddMgSO_4}}=\dfrac{0,0625}{0,2}=0,3125M\)
Gọi \(n_{CaCO_3}=x\left(mol\right);n_{MgCO_3}=y\left(mol\right)\)
\(m_{Al_2O_3}=\dfrac{100x+84y}{10}\)
Bảo toàn Ca \(\Rightarrow n_{CaO}=n_{CaCO_3}=x\left(mol\right)\)
Bảo toàn Mg \(\Rightarrow n_{MgO}=n_{MgCO_3}=y\left(mol\right)\)
\(\Rightarrow m_Y=m_{CaO}+m_{MgO}+m_{Al_2O_3}\)\(=56x+40y+\dfrac{100x+84y}{10}\)
\(\Rightarrow56x+40y+\dfrac{100x+84y}{10}=56,8\%.m_X=56,8\%.\dfrac{11}{10}.\left(100x+84y\right)\)
\(=\dfrac{781}{1250}.\left(100x+84y\right)\)\(\Leftrightarrow56x+40y=\dfrac{328}{625}\left(100x+84y\right)\)
\(\Leftrightarrow x=\dfrac{29}{25}y\)
\(\%m_{CaCO_3}=\dfrac{100x}{\dfrac{11}{10}.\left(100x+84y\right)}.100\%=\dfrac{100.\dfrac{29}{25}y}{\dfrac{11}{10}.\left(100.\dfrac{29}{25}y+84y\right)}.100\%\approx52,73\left(\%\right)\)
\(\%m_{MgCO_3}=\dfrac{84y}{\dfrac{11}{10}.\left(100x+84y\right)}.100\%=\dfrac{84y}{\dfrac{11}{10}.\left(100.\dfrac{29}{25}y+84y\right)}.100\%\approx38,18\left(\%\right)\)
\(\Rightarrow\%m_{Al_2O_3}\approx9,09\left(\%\right)\)
Áp dụng định luật BTKL :
\(m_{CO_2}=142-76=66\left(g\right)\)
\(n_{CO_2}=\dfrac{66}{44}=1.5\left(mol\right)\)
\(V_{CO_2}=1.5\cdot22.4=33.6\left(l\right)\)
\(n_{CaCO_3}=a\left(mol\right),n_{MgCO_3}=b\left(mol\right)\)
\(m_X=100a+84b=142\left(g\right)\left(1\right)\)
\(CaCO_3\underrightarrow{^{^{t^0}}}CaO+CO_2\)
\(MgCO_3\underrightarrow{^{^{t^0}}}MgO+CO_2\)
\(m_Y=56a+40b=76\left(g\right)\left(2\right)\)
\(\left(1\right),\left(2\right):a=1,b=0.5\)
\(\%CaO=\dfrac{56\cdot1}{76}\cdot100\%=73.68\%\)
\(\%MgO=100-73.68=26.32\%\)
PTHH: \(CaCO_3\xrightarrow[]{t^o}CaO+CO_2\uparrow\)
a_______a_____a (mol)
\(MgCO_3\xrightarrow[]{t^o}MgO+CO_2\uparrow\)
b_______b_____b (mol)
Ta lập hệ phương trình: \(\left\{{}\begin{matrix}100a+84b=142\\56a+40b=76\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0,5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{CaO}=\dfrac{56}{76}\cdot100\%\approx73,68\%\\\%m_{MgO}=26,32\%\\V_{CO_2}=\left(1+0,5\right)\cdot22,4=33,6\left(l\right)\end{matrix}\right.\)