Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_{xq}=\pi.r.l\Leftrightarrow235,5=\pi.10.l\Leftrightarrow l=\dfrac{235,5}{10\pi}\approx7,496\left(cm\right)\)
\(1.Sxq=\pi Rl=\pi3.5=15\pi cm^2\)
\(Stp=Sxq+\pi R ^2=15\pi+9\pi=24\pi cm^2\)
\(2.V=\dfrac{1}{3}\pi R^2.\sqrt{l^2-R^2}=\dfrac{1}{3}\pi.3^2.\sqrt{5^2-3^2}=12\pi cm^3\)
Bán kính đáy của hình nón là:
r = \(\dfrac{S_{xp}}{\pi.l}=\dfrac{80\pi}{\pi.16}=5\left(cm\right)\)
Lời giải:
Theo bài ra ta có:
$\pi rl=2\pi r^2$
$\Rightarrow l=2r=6$ (cm)
Mà theo định lý Pitago: $l^2=h^2+r^2$
$\Rightarrow h=\sqrt{l^2-r^2}=3\sqrt{3}$ (cm)
Thể tích hình nón:
$V=\frac{1}{3}\pi r^2h=\frac{1}{3}.\pi. 3^2.3\sqrt{3}=9\sqrt{3}\pi$ (cm3)
Lắp công thức tinh dịên h vào rồi giải hệ hai phương trình hai ân .\(S_{xq}=\pi rl=80\pi\)\(S_đ=\pi.r^2=\)36\(\pi\)Trong đó l đương sinh và r là ban kinh đay.Tìm được l,r rồi dùng Pitago tinh đường cao h .Lắp vào công thức tinh thể h là xong .
Tam giác SOA vuông tại O có SA = 10 cm; OA = 6m
Thể tích của hình nón là: