Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
l | 25 | 8 | 15 | 8 |
v | 20 | 4 | 12 | 6 |
h | 10 | 6 | 4 | 12 |
Sxq | 900 | 144 | 216 | 336 |
Stp | 1900 | 208 | 576 | 432 |
V | 5000 | 192 | 720 | 576 |
Trước hết ta chứng minh hệ thức: DA2 = AB2 + BC2 + CD2.
+ ΔBCD vuông tại C suy ra: BD2 = BC2 + CD2 .
+ ΔABD vuông tại B ⇒ AD2 = AB2 + BD2
Mà BD2 = BC2 + CD2 ⇒ AD2 = AB2 + BC2 + CD2 .
Vậy AD2 = AB2 + BC2 + CD2 .
Áp dụng hệ thức trên để tính các cạnh còn thiếu trong bảng ta có:
+ Cột 1: AB = 6; BC = 15; CD = 42
⇒AD2 = AB2 + BC2 + CD2 = 62 + 152 + 422 = 2025
⇒AD = 45.
+ Cột 2: AB = 13; BC = 16; AD = 45
⇒CD2 = AD2 - AB2 - BC2 = 452 - 132 - 162 = 1600
⇒CD = 40.
+ Cột 3: AB = 14; CD = 70; DA = 75
⇒BC2 = DA2 - CD2 - AB2 = 752 - 702 - 142 = 529
⇒BC = 23
+ Cột 4: BC = 34; CD = 62; DA = 75
⇒AB2 = DA2 - BC2 - CD2 = 752 - 342 - 622 = 625
⇒AB = 25.
Vậy ta có kết quả như bảng sau:
AB | 6 | 13 | 14 | 25 |
BC | 15 | 16 | 23 | 34 |
CD | 42 | 40 | 70 | 62 |
DA | 45 | 45 | 75 | 75 |
Ta có : Diện tích đáy : S = b.h
Thể tích V = S.h1
+ Ở cột 2 : S = b.h = . 5.2 = 5
V = S .h1 = 5. 8 = 40
+ Ở cột 3 : S =. b.h => h = == 4
V = S .h1 = 12.5 = 60
+ Ở cột 4: h = == 3
V = S .h1 =>h1 = = = 2
+ Ở cột 5: V = S .h1 =>h1 = = = 5
S = b.h = b = = =
Vậy có kết quả sau khi điền vào bảng sau là:
b(cm) |
5 |
6 |
4 |
5 |
h(cm) |
2 |
4 |
3 |
4 |
h1(cm) |
8 |
5 |
2 |
10 |
Diện tích một đáy(cm) |
5 |
12 |
6 |
|
thể tích |
40 |
60 |
12 |
50 |
Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.
Theo giả thiết ABCD là hình bình hành nên ta có:
ˆDAB=ˆDCB,ˆADC=ˆABC (1)
Theo định lí tổng các góc của một tứ giác ta có:
ˆDAB+ˆDCB+ˆADC+ˆABC=360o (2)
Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o
Vì AG là tia phân giác ˆDAB (giả thiết)
⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)
Vì BG là tia phân giác ˆABC (giả thiết)
⇒⇒ ˆABG=1/2ˆABC
Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o
Xét ΔAGB= có:
ˆBAG+ˆABG=90o (3)
Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:
ˆBAG+ˆABG+ˆAGB=180o (4)
Từ (3) và (4) ⇒ˆAGB=90o
Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o
Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
a | 9 | 35 | 20 | 63 | 28 |
b | 40 | 12 | 21 | 16 | 45 |
c | 41 | 37 | 29 | 65 | 53 |
h | 8 | 18 | 17 | 24 | 13 |
Diện tích 1 đáy | 180 | 210 | 210 | 504 | 630 |
Diện tích xung quanh | 720 | 1512 | 1190 | 3456 | 1638 |
Diện tích toàn phần | 1080 | 1932 | 1610 | 4464 | 2898 |
Thể tích | 1440 | 3780 | 3570 | 12096 | 8190 |
Hình lăng trụ | SỐ cạnh của một đáy | Số mặt | SỐ đỉnh | SỐ cạnh |
a | 6 | 8 | 12 | 18 |
b | 5 | 7 | 10 | 15 |
a: m=n+2
d=2n;
c=3n
b: Số cạnh của một đáy là:
n=d/2=20/2=10(cạnh)
c: Hình lăng trụ có 20 đỉnh thì
Số mặt là m=n+2=10+2=12(mặt)
Số cạnh là c=3n=30(cạnh)
d: Không thể làm một hình lăng trụ có 15 đỉnh bởi 15 là số lẻ
Kết quả:
Cách tính: