Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).
b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow n\in\left\{-1\right\}\)
c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra
.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)
Thử lại thỏa mãn.
Gọi ước chung là d (d thuộc N*)
ta có 6n+3chia hết cho d
3n+1chia hết cho d
=>6n-3chia hết cho d
6n+2chia hết cho d
=>(6n-3)-(6n+2)chia hết cho d
=>1chia hết cho d
=> d=1
=>n=1
vậy n=1
Để \(A\)có giá trị nguyên thì \(6n+3⋮3n+1\)
Ta có :
\(6n+3=\left(3n+1\right).2+3-2=2\left(3n+1\right)+1\)
Ta thấy :
\(3n+1⋮3n+1\Rightarrow2\left(3n+1\right)⋮3n+1\)
Để \(6n+3⋮3n+1\)thì \(1⋮3n+1\)
\(\Rightarrow3n+1\in\left\{1;-1\right\}\)
\(\Rightarrow3n\in\left\{0;-2\right\}\)
\(\Rightarrow n\in\left\{0;\frac{-2}{3}\right\}\)
Vì \(n\inℤ\Rightarrow n=0\)
Vậy \(n=0\)
\(A=\frac{6n+3}{3n+1}=\frac{2\left(3n+1\right)+1}{3n+1}=2+\frac{1}{3n+1}\)
A có giá trị nguyên <=> \(\frac{1}{3n+1}\)có giá trị nguyên
<=> \(1⋮3n+1\)
<=> \(3n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
3n+1 | 1 | -1 |
n | 0 | -2/3 |
Đk n nguyên => n = 0
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.