Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết vậy đúng đó em
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . [4/(3.7) + 4/(7.11) + 4/(11.15) + ... + 4/(2019.2023)]
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
\(A=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+\frac{5}{11\cdot15}+...+\frac{5}{81\cdot85}+\frac{5}{85\cdot89}\\ A=\frac{5}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{81\cdot85}+\frac{4}{85\cdot89}\right)\\ A=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{81}-\frac{1}{85}+\frac{1}{85}-\frac{1}{89}\right)\\ A=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{89}\right)\\ A=\frac{5}{4}\left(\frac{89}{267}-\frac{3}{267}\right)\\ A=\frac{5}{4}\cdot\frac{86}{267}=\frac{215}{534}\)
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
Lời giải:
$A=5(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{2019.2023})$
$4A=5(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{2019.2023})$
$=5(\frac{7-3}{3.7}+\frac{11-7}{7.11}+\frac{15-11}{11.15}+...+\frac{2023-2019}{2019.2023})$
$=5(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{2019}-\frac{1}{2023})$
$=5(\frac{1}{3}-\frac{1}{2023})=\frac{2020}{6069}$
$\Rightarrow A=\frac{2020}{6069}:4=\frac{505}{6069}$
a) \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
= \(\frac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left(5^2\right)^3.\left(2^2\right)^5}\)
= \(\frac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{5^6.2^{10}}\)
= \(\frac{5^8.2^6-5^7.2^6+5^7.2^{10}}{5^6.2^{10}}\)
= \(\frac{5^7.2^6.\left(5-1+2^4\right)}{5^6.2^{10}}\)
= \(\frac{5.20}{2^4}=\frac{25}{4}\)
\(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^3\cdot3\cdot5\cdot2^9\cdot3^9}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\)
\(=\frac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\frac{2^2}{5}=\frac{4}{5}\)
=5/4(4/3*7+4/7*11+...+4/81*85)
=5/4(1/3-1/7+1/7-1/11+...+1/81-1/85)
=5/4*82/255=41/102