Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) 4.415.8.25.125
= (4.25). (8.125).415
= 100.1000.415
= 100000.415
= 41500000
b) 2.31.12+4.42.6+8.27.3
= (2.31.12)+(4.42.6)+(8.27.3)
= (2.12).31+(4.6).42+(8.3).27
= 24.31+24.42+24.27
= 24 (31+42+27)
= 24.100
= 2400
Lời giải:
$A=5^{50}-5^{48}+5^{46}-5^{44}+....-5^4+5^2-1$
$5^2A=5^{52}-5^{50}+5^{48}-5^{46}+...-5^6+5^4-5^2$
$\Rightarrow A+5^2A=5^{52}-1$
$\Rightarrow 26A=5^{52}-1$
$\Rightarrow 5^{52}-1+1=5^n$
$\Rightarrow 5^{52}=5^n$
$\Rightarrow n=52$
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
Đặt \(A=5+5^2+5^3+5^4+...+5^{49}+5^{50}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{49}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{49}.6\)
\(=6.\left(5+5^3+...+5^{49}\right)⋮6\)
Vậy \(A⋮6\)
c) Câu hỏi của Yumani Jeng - Toán lớp 6 - Học toán với OnlineMath