Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=a^6-1=\left(a^3-1\right)\left(a^3+1\right)=\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
Nếu a không chia hết cho 7
+ a =7k +1 =>a-1 = 7k chia hết cho 7 => A chia hết cho 7
+a = 7k +2 => a2 +a +1 = (7k +2)2 + 7k +2 +1 = 7(7k2 +3k +1) chia hết cho 7 => A chia hết cho 7
Tương tụ
+a =7k +3 => a2 -a +1 chia hết cho 7 => A chia hết chi 7
+a =7k +4
+a =7k +5
+a =7k+6
Vậy ........
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)
Ta có: 55 chia hết cho 11
Nên \(7^4.55\)chia hết cho 11
Hay \(7^6+7^5-7^4\)chia hết cho 11
Câu b,c làm tương tự
7^6+7^5-7^4=7^4*(7^2+7-2)=7^4*55=7^4*5*11 chia hết cho 11
10^9+10^8+10^7=10^7*(10^2+10+1)=10^7*111=10^6*5*222 chi hết cho 222
ta có76+75+74=74x(72+7-1)
=74x55
do 55 chia hết cho 11 nên 74x55 chia hết cho 11
vậy76+75-74 chia hết cho 11
+)Xét x=0;1 hiển nhiên đúng
+)Xét x ko bằng 0,1
Ta có a^5 - a - a(a^4-a) = a(a^2 -1) ( a^2+1)=a(a-1)(n+1)(n^2 +1 )
ta có : n(n-1) là tích hai số tự nhiên liên tiếp
=> (n-1)n(n+1)(n^2 +1 ) chia hết cho 10
Ta có :
\(43^{43}=43^{42}.43=\left(43^2\right)^{21}.43=\overline{.....9}^{21}.43=\overline{.....9}.43=\overline{......7}\)
\(17^{17}=17^{16}.17=\left(17^2\right)^8.17=\overline{.....9}^8.17=\overline{......1}.17=\overline{.....7}\)
\(\Rightarrow43^{43}-17^{17}=\overline{.......7}-\overline{.......7}=\overline{......0}⋮10\)(đpcm)
Ta có : 4343 - 1717 = 4340.433 - 1716.17 = 434.10 . 79507 - 174.4 . 17 = (.....1).79507 - (.....1).17 = (.......7) - (......7) = 0
Vì 4343 - 1717 có chữ số tận cùng là 0
Nên 4343 - 1717 chia hết cho 10
Vậy A = 4343 - 1717 chia hết cho 10