Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề yêu cầu tìm x ặ?
\(\left(x+2\right)\left(3x-1\right)+\left(x-1\right)\left(2-3x\right)=6\)
\(\Rightarrow3x^2-x+6x-2+2x-3x^2-2+3x=6\)
\(\Rightarrow\left(3x^2-3x^2\right)+\left(-x+6x+2x+3x\right)+\left(-2-2\right)=6\)
\(\Rightarrow10x-4=6\)
\(\Rightarrow10x=10\)
\(\Rightarrow x=1\)
x/12-x/15=2/60
5x/60-4x/60=2/60
x=2
vây quãng đường tư nhà đến trường là 12 km
Giải:
Gọi thời gian tuấn đi đến trường mọi hôm là x. ( x > 0)
Ta có : s = 12x
Đổi: 2 phút = 1/30 giờ
Vậy : s = 15.( x - 1/30)
Ta có pt:
\(12x=15.\left(x-\frac{1}{30}\right)\)
\(\Rightarrow12x=15x-15.\frac{1}{30}=15x-\frac{1}{2}\)
\(\Rightarrow12x-15x=-\frac{1}{2}\Rightarrow-3x=-\frac{1}{2}\Rightarrow3x=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}:3=\frac{1}{2}.\frac{1}{3}=\frac{1}{6}\left(h\right)\)
Thay x= 1/6 vào bt ta có:
\(s=12.\frac{1}{6}=2\left(km\right)\)
a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)
\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)
\(=\left(x^2+9x+19\right)^2\)
b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x-y-2\right)^2\)
d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
x^(n-1).(x+y)-y.[x^(n-1) + y^(n-1)]
=x.x^(n-1)+y.x^(n-1)-y.x^(n-1)-y.y^(n-...
= x. x^n:x - y.y^n:y
=x^n - y^n
xn-1(x+y)-y(xn-1+yn-1)
= xn+xn-1y-yxn-1-yn
=xn+(xn-1y-yxn-1)-yn
=xn-yn
1.A
2.D
3.C
4.B
5.D
Nếu đề là rút gọn thì làm như này nha:
A = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.