Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (12x-5)(4x-1)+(3x-7)(1-16x)
= (48x^2 - 12x - 20x + 5) + (3x - 48x^2 - 7 + 112x)
= 48x^2 - 12x - 20x + 5 +3x - 48x^2 -7 + 112x
= 83x-2
những phần sau bạn cứ làm tương tự theo cách nhân đa thức với đa thức và phá ngiawcj là ra nha :0))
c. x^2-5x+6=0
<=> x^2-5x=-6
<=> -4x=-6
<=> x=-6/-4
vậy tập nghiệm của pt là s={-6/-4}
c. x^2-5x +6 = 0
<=> x^2 - 5x = -6
<=> - 4x = -6
<=> x= -6/-4
Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm
A) 2x2(x+3) - x(x+3) = 0 <=> x(x - 3)(2x-1)=0
B) (2x+5)2 - (x+2)2=0 <=> (x+3)(3x+7)=0
C) (x2-2x) - (3x-6)=0 <=> (x-2)(x-3)=0
D) (2x-7)(2x-7-6x+18)=0 <=> (2x-7)(-4x+11)=0
E) (x-2)(x+1) - (x-2)(x+2)=0 <=> (x-2)*(-1)=0 <=> x-2=0
G) (2x-3)(2x+2-5x)=0 <=> (2x-3)(-3x+2)=0
H) (1-x)(5x+3+3x-7)=0 <=> (1-x)(8x-4)=0
F) (x+6)*3x=0
I) (x-3)(4x-1-5x-2)=0 <=> (x-3)(-x-3)=0
K) (x+4)(5x+8)=0
H) (x+3)(4x-9)=0
* 4x - 1 = 3x - 2
⇔ 4x - 3x = -2 + 1
⇔ x = -1
Vậy tập nghiệm của pt là S = {-1}
* \(\frac{3}{4}-3x=0\)
⇔ \(\frac{3}{4}-\frac{3x.4}{4}=0\)
⇒ 3 - 12x = 0
⇔ 12x = 3
⇔ x = \(\frac{3}{12}=\frac{1}{4}\)
Vậy tập nghiệm của pt là S = \(\left\{\frac{1}{4}\right\}\)
* 3x - 2 = 2x + 3
⇔ 3x - 2x = 3 + 2
⇔ x = 5
Vậy tập nghiệm của pt là S = {5}
* 2(x - 3) = 5(x + 4)
⇔ 2x - 6 = 5x + 20
⇔ 2x - 5x = 20 + 6
⇔ -3x = 26
⇔ x = \(\frac{-26}{3}\)
Vậy tập nghiệm của pt là S = \(\left\{\frac{-26}{3}\right\}\)
\(A,5x-25=0\)
\(\Leftrightarrow5x-5^2=0\)
\(\Leftrightarrow5\left(x-1\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Rightarrow x=1\)
Chúc bạn học tốt !
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
`a)|2x+1|=5`
`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\)
`b)|2x+1|=0`
`<=>2x+1=0`
`<=>2x=-1`
`<=>x=-1/2`
`c)|2x+1|=7`
`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\)
`d)|2x+5|=|3x-7|`
`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\)
`e)|2x+7|=1`
`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\)
`g)|x-2|+|2x-3|=2`
Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`
`pt<=>x-2+2x-3=2`
`<=>3x-5=2`
`<=>3x=7`
`<=>x=7/3(tm)`
Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`
`pt<=>2-x+3-2x=2`
`<=>5-3x=2`
`<=>3x=3`
`<=>x=1(tm)`
Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`
`pt<=>2-x+2x-3=2`
`<=>x-1=2`
`<=>x=3(l)`
`h)|x+2|+|1-x|=3x+2`
Vì `VT>=0=>3x+2>=0=>x>=-2/3`
`=>|x+2|=x+2`
`pt<=>x+2+|1-x|=3x+2`
`<=>|1-x|=2x(x>=0)`
`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\)
a.
$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=5\\ 2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
b.
$|2x+1|=0$
$\Leftrightarrow 2x+1=0$
$\Leftrightarrow x=-\frac{1}{2}$
c.
$|2x+1|=7$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)