K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}...+\frac{2}{99.101}\)

\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow2A=\frac{1}{3}-\frac{1}{101}\)

\(\Rightarrow2A=\frac{101}{303}-\frac{3}{303}\)

\(\Rightarrow2A=\frac{98}{303}\)

\(\Rightarrow A=\frac{98}{303}:2=\frac{98}{303.2}=\frac{98}{606}=\frac{49}{303}\)

lên 820 điểm hỏi đáp nha

22 tháng 7 2021

Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)

Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{1}{15}\)

\(=\dfrac{4}{15}\)

19 tháng 1 2018

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{98}{303}\)

\(=\frac{49}{303}\)

26 tháng 7 2016

\(\text{Ta có:}\) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}\)

\(\Leftrightarrow2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}.2\)

\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).x=\frac{4}{3}\)

\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right).x=\frac{4}{3}\)

\(\Leftrightarrow\left(1-\frac{1}{11}\right)x=\frac{4}{3}\)

\(\Leftrightarrow\frac{10}{11}x=\frac{4}{3}\)

\(\Leftrightarrow x=\frac{4}{3}:\frac{10}{11}=\frac{22}{15}\)

\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{203.205}\) 

\(=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{203.205}\right)\) 

\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{203}-\dfrac{1}{205}\right)\) 

\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{205}\right)\) 

\(=\dfrac{1}{2}.\dfrac{202}{615}\) 

\(=\dfrac{101}{615}\) 

Chúc bạn học tốt!

DD
31 tháng 1 2021

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

\(=\frac{1}{2}\left(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}+\frac{13-11}{11.13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{5}{39}\)

30 tháng 3 2016

a,\(\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{11.13}\)

=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.............+\frac{1}{11}-\frac{1}{13}\)

=\(\frac{1}{3}-\frac{1}{13}\)

=\(\frac{10}{39}\)

b,Đặt A=\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.............+\frac{1}{27.28.29.30}\)

3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...........+\frac{3}{27.28.29.30}\)

3A=\(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+.............+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)

3A=\(\frac{1}{1.2.3}-\frac{1}{28.29.30}\)

3A=\(\frac{1}{6}-\frac{1}{24360}\)

3A=\(\frac{1353}{8120}\)

A=\(\frac{451}{8120}\)

18 tháng 6 2017

\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+............+\dfrac{1}{99.101}\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.....+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{98}{303}=\dfrac{49}{303}\)

19 tháng 6 2017

\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+.................+\dfrac{1}{99.101}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}.\dfrac{98}{303}\)

\(=\dfrac{49}{303}\)

31 tháng 8 2017

Đặt :

\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+.........+\dfrac{1}{99.101}\)

\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+............+\dfrac{2}{99.101}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+............+\dfrac{1}{99}-\dfrac{1}{101}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{101}\)

\(\Leftrightarrow2A=\dfrac{98}{303}\)

\(\Leftrightarrow A=\dfrac{49}{303}\)

31 tháng 8 2017

co gi do sai sai..

28 tháng 8 2017

\(M=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

\(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)

\(M=\frac{1}{3}-\frac{1}{13}\)

\(M=\frac{10}{39}\)

28 tháng 8 2017

\(M=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)

\(M=\frac{1}{2}.\frac{10}{39}\)

\(M=\frac{5}{39}\)

tk mk nha bn