Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)
\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)
\(=x^2+2xy^3-5xy^2-8z+6xy\)
b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(2x-y\right)\left(2x+y\right)\)
\(=\left(2x\right)^2-y^2\)
\(=4x^2-y^2\)
d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)
\(=6xy+15x-2y^2-5y-64xy\)
\(=-58xy+15x-2y^2-5y\)
\(a,2x-1-3x\left(2x-1\right)=0\)
\(\Leftrightarrow2x-1-6x^2+3x=0\)
\(\Leftrightarrow5x-1-6x^2=0\)
\(\Leftrightarrow6x^2-5x+1=0\)
\(\Leftrightarrow6x^2-2x-3x+1=0\)
\(\Leftrightarrow2x\left(3x-1\right)-\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\3x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=1\\3x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{3}\end{cases}}\)
\(b,2x^2+4x=0\)
\(\Leftrightarrow2x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)=x^2y-xy^2+y^2z-yz^2+z^2z-zx^2=x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(z-y\right)\)
\(x^2\left(y-z\right)-y^2\left(x-z\right)-z^2\left(y-z\right)=\left(y-z\right)\left(x-z\right)\left(x+z\right)-y^2\left(x-z\right)=\left(x-z\right)\left(xy-yz-zx-z^2-y^2\right)\)
t cx k bt có đúng hay k đâu nha, nhớ xem kĩ lại