Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1:\overline{0,abc}=a+b+c\)
\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)
\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)
Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125
Vì x,y là số có một chữ số và x-y=6 nên
*Trường hợp 1: x=9; y=3
497+135=632 /9 dư 2(loại)
*Trường hợp 2: x=8; y=2
487+125=612/9=68(chọn)
*Trường hợp 3: x=7; y=1
477+115=592/9 dư 7(loại)
*Trường hợp 4: x=6; y=0
467+105=572/9 dư 5(loại)
Vậy: x=8; y=2
a)Ta có: \(14x=12y\Rightarrow\frac{x}{12}=\frac{y}{14}=\frac{x-y}{12-14}=\frac{-10,2}{-2}=5,1\)
\(\Rightarrow x=5,1.12=61,2\)
\(y=5,1.14=71,4\)
b) Ta có: \(\left(x-5\right)^{2016}-\left|y^2-4\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{2016}=0\\y^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x-5=0\\y^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\y=\pm2\end{cases}}}\)
Vậy....
Lời giải:
\(\overline{0,x(y)}+\overline{0,y(x)}=\overline{0,x}+\overline{0,y}+\overline{0,0(y)}+\overline{0,0(x)}\)
\(=(x+y).0,1+\frac{y}{90}+\frac{x}{90}=(x+y).0,1+(x+y).\frac{1}{90}=9.0,1+9.\frac{1}{90}=1\)
em cảm ơn Akai Haruma