Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.x2-7x+10
⇔x2-2x-5x+10
⇔x(x-2)-5(x-2)
⇔(x-2)(x-5)
b.\(\left(12x^6y^4+9x^5y^3-15x^2y^3\right):3x^2y^3\)
=\(4x^4y+3x^3-5\)
=
x2-7x+10
= x2-5x-2x+10
=x(x-5)-2(x-5)
=(x-5)(x-2)
(12x6y4+9x5y3-15x2y3): 3x2y3
=4x4y+3x3-3
\(b.6x^4+25x^3+12x^2-25x+6=0\\\Leftrightarrow 6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\\\Leftrightarrow 6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\\\Leftrightarrow \left(6x^3+13x^2-14x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^3+18x^2-5x^2-15x+x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)\right]\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-5x+1\right)\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(6x^2-3x-2x+1\right)\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left[3x\left(2x-1\right)-\left(2x-1\right)\right]\left(x+3\right)\left(x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(2x-1\right)\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x-1=0\\x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=\frac{1}{2}\\x=-3\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{1}{3};\frac{1}{2};-3;-2\right\}\)
\(2x^4-9x^3+14x^2-9x+2=0\\\Leftrightarrow 2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\\\Leftrightarrow 2x^3\left(x-1\right)-7x^2\left(x-1\right)+7x\left(x-1\right)-2\left(x-1\right)=0\\\Leftrightarrow \left(2x^3-7x^2+7x-2\right)\left(x-1\right)=0\\\Leftrightarrow \left[2\left(x^3-1\right)-7x\left(x-1\right)\right]\left(x-1\right)=0\\\Leftrightarrow \left(x-1\right)^2\left[2\left(x^2+x+1\right)-7x\right]=0\\\Leftrightarrow \left(2x^2+2x+2-7x\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-5x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left(2x^2-x-4x+2\right)\left(x-1\right)^2=0\\\Leftrightarrow \left[x\left(2x-1\right)-2\left(2x-1\right)\right]\left(x-1\right)^2=0\\\Leftrightarrow \left(x-2\right)\left(2x-1\right)\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\\\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=1\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2;\frac{1}{2};1\right\}\)
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(x^2-7x+12=\left(x-2\right)\left(x-5\right)\)
\(x^2+x-12=\left(x-5\right)\left(x+6\right)\)
\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
a) Ta có: \(8x^2+30x+7\)
\(=8x^2+28x+2x+7\)
\(=4x\left(2x+7\right)+\left(2x+7\right)\)
\(=\left(2x+7\right)\left(4x+1\right)\)
b) Ta có: \(4x^3-12x^2+9x\)
\(=x\left(4x^2-12x+9\right)\)
\(=x\left(2x-3\right)^2\)
c) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=\left(x+2\right)\cdot3x\)
d) Ta có: \(ab+c^2-ac-bc\)
\(=\left(ab-bc\right)+\left(c^2-ac\right)\)
\(=b\left(a-c\right)+c\left(c-a\right)\)
\(=b\left(a-c\right)-c\left(a-c\right)\)
\(=\left(a-c\right)\left(b-c\right)\)
e) Ta có: \(4x^2-y^2+1-4x\)
\(=\left(4x^2-4x+1\right)-y^2\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1-y\right)\left(2x-1+y\right)\)
f) Ta có: \(6x^2-7x-20\)
\(=6x^2-15x+8x-20\)
\(=3x\left(2x-5\right)+4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(3x+4\right)\)
\(4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\), \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
\(ab+c^2-ac-bc=ab-ac-bc+c^2=a\left(b-c\right)-c\left(b-c\right)=\left(b-c\right)\left(a-c\right)\)
\(4x^2-y^2+1-4x=4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-y-1\right)\left(2x+y-1\right)\)
\(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(2x-5\right)\left(3x+4\right)\)
\(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(4x+1\right)\left(2x+7\right)\)
\(2x^4-7x^3+9x^2-7x+2=0\)
\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)
\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)
Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)
Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)
a) -3x(2x-5)-2x(2-3x)=7
=> -6x2 + 15 - 4x + 6x2 = 7
=> -6x2 + 6x2 + 15 -4x =7
=> 15 - 4x =7
=> 4x = 15-7 =8
=> x= 8:4 = 2
b) \(\left(9x-12x+4\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x-12x+4=0\\2-5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(9-12\right)=-4\\5x=2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}-3x=-4\\x=\frac{2}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{2}{5}\end{cases}}\)
Vay...
c) (4-3x) = (5+2x)
=> 4-3x=5+2x
=> -3x - 2x = 5-4
=> x(-3-2) = 1
=> -5x = 1
=> x= \(\frac{-1}{5}\)
d) (2x-1)-3(2x-1)=0
=> 2x-1 - 6x + 3 =0
=> 2x - 6x = 1 -3
=> x(2-6)=-2
=> -4x= -2
=> x = \(\frac{1}{2}\)
d)(2x-1)-3(2x-1)
=>1(2x-1)-3(2x-1)=0
=>(1-3).(2x-1)=0
=>-2(2x-1)=0
=>2x-1=0
=>2x=-1
=>x=-0,5
vay x =-0,5
1: x^2-9x+8=0
=>(x-1)(x-8)=0
=>x=1 hoặc x=8
2: 3x^2-7x+4=0
=>3x^2-3x-4x+4=0
=>(x-1)(3x-4)=0
=>x=4/3 hoặc x=1
3: 2x^2+5x-7=0
=>(2x+7)(x-1)=0
=>x=1 hoặc x=-7/2
4: 3x^2-9x+6=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
5: x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
`@` `\text {Answer}`
`\downarrow`
`1)`
\(x^2 - 9x + 8?\)
\(x^2-9x+8=0\)
`<=>`\(x^2-8x-x+8=0\)
`<=> (x^2 - 8x) - (x - 8) = 0`
`<=> x(x - 8) - (x-8) = 0`
`<=> (x-1)(x-8) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 8}`
`2)`
\(3x^2 - 7x + 4 =0\)
`<=> 3x^2 - 3x - 4x + 4 = 0`
`<=> (3x^2 - 3x) - (4x - 4) = 0`
`<=> 3x(x - 1) - 4(x - 1) = 0`
`<=> (3x - 4)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {4/3; 1}`
`3)`
\(2x^2 + 5x - 7=0\)
`<=> 2x^2 - 2x + 7x - 7 = 0`
`<=> (2x^2 - 2x) + (7x - 7) = 0`
`<=> 2x(x - 1) + 7(x - 1) = 0`
`<=> (2x+7)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`
Dùng lược đồ hooc-nơ em nhé. Em có thể lên google để tìm hiểu về nó.