K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

Ngoài những hằng đẳng thức cơ bản trong sgk, còn có những hằng đẳng thức hay được sử dụng trong các bài toán như sau:

(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac


(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac


(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc


(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)


(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)


(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)


(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)


(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)


(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2


(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc


(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33


(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3


(13) an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)


(14) Với n lẻ:
an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)


(15) Nhị thức Newton:
(a+b)n=an+n!(n−1)!1!an−1b+n!(n−2)!2!an−2b2+...+n!(n−k)!k!an−kbk+...+n!2!(n−2)!a2bn−2+n)!1!(n−1)!abn−1+bn

14 tháng 5 2017

Các hằng đẳng thức mở rộng thì nhiều nhưng quan trọng phải nhớ tốt mà biết vận dụng linh hoạt.
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
(a + b - c)² = a² + b² + c² + 2ab - 2ac - 2bc
(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd
(a + b + c)³ = a³ + b³ + c³ + 3(a + b)(a + c)(b + c)
a³ + b³ = (a + b)³ - 3ab(a + b)
a³ - b³ = (a - b)³ + 3ab(a - b)
a^n + b^n = (a + b)( a^(n - 1) - a^(n - 2)b + ... + b^(n - 1) )
a^n - b^n = (a - b)( a^(n - 1) + a^(n - 2)b + ....+b^(n - 1) )
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - ac - bc)

20 tháng 5 2019

Các hàng đẳng thức lớp 7 đc học là ;

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(a^2-b^2=\left(a+b\right).\left(a-b\right)\)

Vì câu hỏi ghi toán 7 nên chỉ có thế thôi chưa học đâu

21 tháng 5 2019

7 hằng đẳng thức đáng nhớ là :

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

~ Hok tốt ~

28 tháng 6 2015

1. ( A + B ) = A^2 + 2.A.B + B^2

2. ( A - B ) = A^2 - 2.A.B + B^2

3.  A^2 - B^2 = ( A + B ).(A - B )

4. ( A + B )^3 = A^3 + 3A^2B + 3AB^2 + B^3

5. ( A - B )^3 = A^3 - 3A^2B + 3AB^2 - B^3

6. A^3 + B^3 = ( A + B ).( A^2 - AB + B^2 ) 

7. A^3 - B^3 = ( A - B ).( A^2 + AB + B^2 )

28 tháng 6 2015

Có trong 1 số ít quyển vở mỏng

23 tháng 10 2015

1. (A+B)2 = A2+2AB+B2

2. (A – B)2= A2 – 2AB+ B2

3. A– B2= (A-B)(A+B)

4. (A+B)3= A3+3A2B +3AB2+B3

5. (A – B)3 = A3- 3A2B+ 3AB2- B3

6. A+ B3= (A+B)(A2- AB +B2)

7. A3- B3= (A- B)(A2+ AB+ B2)

8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

28 tháng 8 2020

Ta có: \(\left(a+2b-3c-d\right)\left(a+2b+3c+d\right)\)

\(=\left[\left(a+2b\right)-\left(3c+d\right)\right]\cdot\left[\left(a+2b\right)+\left(3c+d\right)\right]\)

\(=\left(a+2b\right)^2-\left(3c+d\right)^2\)

\(=a^2+4ab+4b^2-9c^2-6cd-d^2\)

28 tháng 8 2020

( a + 2b - 3c - d )( a + 2b + 3c + d )

= [ ( a + 2b ) - ( 3c + d ) ][ ( a + 2b ) + ( 3c + d ) ]

= ( a + 2b )2 - ( 3c + d )2

= a2 + 4ab + 4b2 - ( 9c2 + 6cd + d2 )

= a2 + 4ab + 4b2 - 9c2 - 6cd - d2

5 tháng 7 2018

a,

 C1: (a - b + c)2 =  (a - b + c) (a - b + c)

                          = a (a - b + c) - b (a - b + c) +c (a - b + c)

                          = a- ab + ac - ab + b2 - bc + ac - bc + c2

                               = a2 - 2ab + b+ 2ac - 2bc + c2

C2: (a - b + c)2 = [ (a - b) + c ]2

                         = (a - b)2 + 2c (a - b) + c2

                         = a- 2ab + b2 + 2ac - 2bc + c2

b,

C1: (a + b + c)(a + b - c) = a (a + b - c) + b (a + b - c) + c (a + b - c)

                                        = a2 + ab - ac + ab + b2 - bc + ac + bc - c2 

                                        = a2 + 2ab + b2 - c2 

C2: (a + b + c)(a + b - c) =  [ (a + b) + c ] [ ( a+ b) - c ] 

                                        = (a + b)2 - c2 

                                        = a+ 2ab + b2 - c2

hok tốt ~

9 tháng 5 2018

dung ban a 

mk chac chan 100%

9 tháng 5 2018

 Hằng đẳng thức 1:Bình phương của một tổng:

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

19 tháng 1 2016

(a + b)n = nC0an + nC1an − 1b + nC2an − 2b2 + nC3an − 3b3 + ... + nCnbn
Đã nghĩ ra 
Nhờ công thức tổ hợp và chỉnh hợp lớp 11
 

13 tháng 4 2016

( x + y )5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + b5

23 tháng 8 2023

\(7)\)  \(\left(3x\right)^2-y^2=\left(3x-y\right)\left(3x+y\right)\)

\(8)\)  \(x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)

\(9)\)  \(\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)

7 tháng 11 2016

Tong sách trong vở lật ra là thấy 

Chúc bn học giỏi 

^_^ T_T

7 tháng 11 2016

1 binh phuong cua mot tong

2 binh phuong cua mot hieu

3 hieu 2 binh phuong

4 lap phuong cua mot tong

5 lap phuong cua mot hieu

6 tong 2 lap phuong

7 hieu hai lap phuong