Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 3 + 3n + 1 + 2n + 3 + 2n + 2
= 3n.33 + 3n.3 + 2n.23 + 2n.22
= 3n.(27 + 3) + 2n.(8 + 4)
= 3n.30 + 2n.12
= 3n.5.6 + 2n.2.6
= 6.(3n.5 + 2n.2) \(⋮\) 6
VT đã để x^2 => đừng tính như @ nguyễn nam=> chậm thêm 2 bước
x=\(\frac{24.25}{2}=12.25=3.100=300\)
1^3+2^3...+24^3=90 000
\(\Rightarrow x=\sqrt{90000}\)
\(\Rightarrow x=300\)
S=2^2+4^2+6^2+...+20^2
=(1.2)^2+(2.2)^2+(2.3)^2+...+(2.10)^2
=1^2.2^2+2^2.2^2+2^2.3^2+...+2^2.10^2
=2^2.(1^2+2^2+3^3+...+10^2)
=2^2.385=4.385=1540
đề có thiếu sót nhé,tớ sửa vào rồi đấy
a)\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14\)
suy ra 8^7-2^18 chia hết cho 14
a) 8^7 = (2^3)^7 = 2^21
Vậy 8^7-2^18 = 2^21 - 2^18 = 2^18(2^3-1)= 2^18 x 7 chia hết cho 7 (ĐPM)
b) 5^5 - 5^4 + 5^3 = 5^3(5^2-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7 (ĐPCM)
c) 7^6 + 7^5 - 7^4 = 7^4 x ( 7^2+7-1) = 7^4 x 55 = 7^4 x 5 x 11 chia hết cho 11 (ĐPCM)
d) Ta có: 24^54 = 8^54 x 3^54 = (2^3)^54 x 3^54 = 2^162 x 3^54
72^63 = 8^63 x 9^63 = (2^3)^63 x (3^2)^63 = 2^189 x 3^126
Vậy 24^54 x 5^24 x 2^10 = 5^24 x 2^10 x 2^162 x 3^54 = 2^172 x 3^54 x 5^24
Rõ ràng 2^172 x 3^54 x 5^24 không chia hết cho 2^189 x 3^126 nên 24^54 x 5^24 x 2^10 không chia hết cho 72^63 (bài này mình thấy lạ, nếu sai ở đâu các bạn chỉ ra nha)
e) \(3^{n+2}-2^{n+2}+3^n+2^n=3^n.9-2^n.4+3^n+2^n=3^n\left(9+1\right)-2^n\left(4-1\right)=10.3^n-2^n.3\)
Rõ ràng 10.3^n - 2^n.3 không chia hết cho 10 (bạn ấn máy tính thử, mình gặp bài này rồi, chắc đề sai)
Sửa:12+22+...+102=385
Từ 12+22+...+102=385
=>22.(12+22+...+102)=22.385=4.385=1540
=>22.12+22.22+...+22.102=1540
=>(2.1)2+(2.2)2+...+(2.10)2=1540
=>22+42+...+202=1540
=>S=1540
Từ 12+22+...+102=385
=>\(\frac{1}{5^2}\cdot\left(1^2+2^2+...+10^2\right)=\frac{1}{5^2}\cdot385\)
=>\(\frac{1}{5^2}\cdot1^2+\frac{1}{5^2}\cdot2^2+...+\frac{1}{5^2}\cdot10^2=\frac{1}{25}.385\)
=>\(\left(\frac{1}{5}.1\right)^2+\left(\frac{1}{5}\cdot2\right)^2+...+\left(\frac{1}{5}.10\right)^2=15,4\)
=>(0,2)2+(0,4)2+...+22=15,4
=>T=15,4
a) \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)
\(=X^2y+x+xy^2-y-x^2y-xy^2\)
\(=x-y\)
a) Ta có :\(\left(x+2\right)^2\ge0;\left(y-4\right)^4\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :\(\left(x+y-11\right)^2\ge0;\left(x-y-4\right)^2\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y-11\right)^2=0\\\left(x-y-4\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+y=11\\x-y=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(11+4\right):2=7,5\\y=\left(11-4\right):2=3,5\end{cases}}\)
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
a) Ta có :(x+2)2≥0;(y−4)4≥0;Với∀x,y∈Z
⇒[
(x+2)2=0 |
(y−3)4=0 |
⇒[
x+2=0 |
y−3=0 |
⇒[
x=−2 |
y=3 |
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :(x+y−11)2≥0;(x−y−4)2≥0;Với∀x,y∈Z
⇒[
(x+y−11)2=0 |
(x−y−4)2=0 |
⇒[
x+y=11 |
x−y=4 |
⇒[
x=(11+4):2=7,5 |
y=(11−4):2=3,5 |
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Ta có: \(6-\left(x-\dfrac{1}{3}\right)^2=2^{2021}:\left(-2\right)^{2020}\)
\(\Leftrightarrow6-\left(x-\dfrac{1}{3}\right)^2=2^{2021}:2^{2020}\\ \Leftrightarrow6-\left(x-\dfrac{1}{3}\right)^2=2\\ \Leftrightarrow\left(x-\dfrac{1}{3}\right)^2=4\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=2\\x-\dfrac{1}{3}=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)