Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
1) \(\frac{3}{x^2-4y^2}\)
\(=\frac{3}{\left(x-2y\right)\left(x+2y\right)}\)
Phân thức xác định khi \(\left(x-2y\right)\left(x+2y\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x-2y\ne0\\x+2y\ne0\end{cases}}\Rightarrow x\ne\pm2y\)
2) \(\frac{2x}{8x^3+12x^2+6x+1}\)
\(=\frac{2x}{\left(2x+1\right)^3}\)
Phân thức xác định khi \(\left(2x+1\right)^3\ne0\)
\(\Rightarrow2x+1\ne0\)
\(\Rightarrow x\ne-\frac{1}{2}\)
3) \(\frac{5}{2x-3x^2}\)
\(=\frac{5}{x\left(2-3x\right)}\)
Phân thức xác định khi : \(x\left(2-3x\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x\ne0\\2-3x\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{2}{3}\end{cases}}\)
a: \(=\dfrac{4x\left(3x+1\right)}{\left(3x+1\right)\left(3x-1\right)}=\dfrac{4x}{3x-1}\)
b: \(=\dfrac{2\left(4x^2-4x+1\right)}{4x-30+2x}=\dfrac{4\left(2x-1\right)^2}{6x-30}=\dfrac{2\left(2x-1\right)^2}{3\left(x-5\right)}\)
d: \(=\dfrac{x\left(x-6\right)}{2\left(x-6\right)\left(x+6\right)}=\dfrac{x}{2x+12}\)
1 x . x x + 1 . x + 1 x + 2 . x + 2 x + 3 . x + 3 x + 4 . x + 4 x + 5 . x + 5 x + 6 . x + 6 x + 7 . x + 7 x + 8 . x + 8 x + 9 . x + 9 x + 10 . x + 10 1 = 1
1: Đa thức này ko phân tích được nha bạn
2: \(x^2+8x+7\)
\(=x^2+x+7x+7\)
\(=x\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(x+7\right)\)
3: \(x^2-6x-16\)
\(=x^2-8x+2x-16\)
\(=x\left(x-8\right)+2\left(x-8\right)\)
\(=\left(x-8\right)\left(x+2\right)\)
4: \(4x^2-8x+3\)
\(=4x^2-2x-6x+3\)
\(=2x\left(2x-1\right)-3\left(2x-1\right)\)
\(=\left(2x-1\right)\left(2x-3\right)\)
5: \(3x^2-11x+6\)
\(=3x^2-9x-2x+6\)
\(=3x\left(x-3\right)-2\left(x-3\right)\)
\(=\left(x-3\right)\left(3x-2\right)\)
Câu 5: B
Câu 6:
a: ĐKXĐ: \(x-2\ne0\)
=>\(x\ne2\)
b: ĐKXĐ: \(x+1\ne0\)
=>\(x\ne-1\)
8:
\(A=\dfrac{x^2+4}{3x^2-6x}+\dfrac{5x+2}{3x}-\dfrac{4x}{3x^2-6x}\)
\(=\dfrac{x^2+4-4x}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)
\(=\dfrac{\left(x-2\right)^2}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)
\(=\dfrac{x-2+5x+2}{3x}=\dfrac{6x}{3x}=2\)
7:
\(\dfrac{8x^3yz}{24xy^2}\)
\(=\dfrac{8xy\cdot x^2z}{8xy\cdot3y}\)
\(=\dfrac{x^2z}{3y}\)