Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Ta có :
A = 2017 x 2017 = 2016 x 2017 + 2017
B = 2016 x 2018 = 2016 x 2017 + 2016
=> A > B
B= 1.99+2.98+2.97+...98.2+99.1
=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99.(99-98)
=1.99+2.99-1.2+3.99-2.3+...+98.99-97.98+99.99-98.99
=(1.99+2.99+3.99+...+98.99+99.99)-(1.2+2.3+3.4+...+97.98+98.99)
=99.(1+2+3+...+98+99)-(1.2+2.3+3.4+...+97.98+98.99)
=99.4950-(1.2+2.3+3.4+...+97.98+98.99)
=490050-(1.2+2.3+3.4+...+97.98+98.99)
Đặt C=1.2+2.3+3.4+...+97.98+98.99
=> 3C=1.2.3+2.3.3+3.4.3+...+97.98.3+98.99.3
=1.2.3+2.3.(4-1)+...+98.99.(100-97)
=1.2.3+2.3.4-1.2.3+...+98.99.100-97.98.99
=98.99.100
=> A=(98.99.100):3=323400
Vậy B=490050-323400=166650
=1.99+2.(99-1)+3.(99-2)+4.(99-3)+......+99.(99-98)
=99.(1+2+3+.......+99)-(2+2.3+3.4+........+98.99)
=99.(1+99).99:2-98.99.100:3
=99.50.99-98.33.100
=490050-323400=166650
Bạn vào trang Wolfram Alpha sẽ thấy:
20182017 có 6667 chữ số
20172018 có 6669 chữ số
Vậy 20182017 < 20172018
B x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
= 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
= 99x100x101
B = 99x100x101 : 3
= 333300
nhanh k minh
B= 1x2+3x4+5x6+...+99x100
=> Bx3= 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ...+ 99x100x3
=> Bx3= 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3)+...+99x100x(101-98)
=> Bx3= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 +4x5x6 - 3x4x5 +...+ 99x100x101 - 98x99x100
=> Bx3= 99x100x101
=> B= 99x100x101:3
=> B= 333300
\(5^{40}=\left(5^4\right)^{10}=625^{10}\)
Mà \(625^{10}>620^{10}\Rightarrow5^{40}>620^{10}\)
Vậy 540 > 62010 ( đpcm )
Ta có :
\(5^{40}=\left(5^4\right)^{10}=625^{10}\)
Vì \(625>620\Rightarrow625^{10}>620^{10}\)
Hay \(5^{40}>620^{10}\)
Vậy \(5^{40}>620^{10}\)
_Chúc bạn học tốt_