Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) $(\dfrac{-1}{3}xy)(3x^2yz^2)$
$=\dfrac{-1}{3}.3.x^2.x.y.y.z^2$
$=-1x^3y^2z^2$
Hệ số của đơn thức : -1
b) $-54y^2.b.x=-54bxy^2$
Hệ số của đơn thức : -54b
c) $-2x^2y.(\dfrac{-1}{2})^2x(y^2z)^3$
$=-2x^2y.\dfrac{1}{4}xy^6z^3$
$=-2.\dfrac{1}{4}.x^2.x.y.y^6.z^3$
$=\dfrac{-1}{2}x^3y^7z^3$
Hệ số của đơn thức : $\dfrac{-1}{2}$
\(\left(\dfrac{1}{3}x^3y\right).\left(-xy\right)^2=\dfrac{1}{3}x^3y.\left(-x\right)^2y^2\)
\(=\dfrac{1}{3}x^5y^3\)
Tick mk nhé
Chắc là thu gọn đơn thức trên đúng ko bạn?Vậy mk giải nhé:
\(\left(\dfrac{1}{3}x^3y\right).\left(-xy\right)^2\)=\(\left(\dfrac{1}{3}x^3y\right).\left(x^2y^2\right)\)
=\(\dfrac{1}{3}\left(x^3x^2\right)\left(y.y^2\right)\)
=\(\dfrac{1}{3}x^5y^3\)
Mk tìm bậc luôn cho bạn nhé:
Bậc của đơn thức trên là 8.
Học tốt nha.
Làm lại nha
\(\dfrac{2}{5}x^2y+xy^2-3xy+\dfrac{1}{3}xy^2-3xy-\dfrac{1}{2}x^2y\)
\(=\left(\dfrac{2}{5}x^2y+\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{3}xy^2\right)+\left(-3xy^2-3xy^2\right)\)
\(=-\dfrac{1}{10}x^2y+\dfrac{4}{3}xy^2-6xy\)
\(\dfrac{2}{5}x^2y+xy^2-3xy+\dfrac{1}{3}xy^2-3xy-\dfrac{1}{2}x^2y\)
\(=\left(\dfrac{2}{5}x^2y-\dfrac{1}{2}x^2y\right)+\left(xy^2+\dfrac{1}{3}xy^2\right)+\left(3xy-3xy\right)\)
\(=-\dfrac{1}{10}x^2y+\dfrac{4}{3}xy^2\)
3,
\(M=\dfrac{\dfrac{4}{237}-\dfrac{4}{2371}+\dfrac{4}{23711}}{\dfrac{-5}{237}+\dfrac{5}{2371}-\dfrac{5}{23711}}=\dfrac{\left(-4\right)\cdot\left(\dfrac{-1}{237}+\dfrac{1}{2371}-\dfrac{1}{23711}\right)}{5\cdot\left(\dfrac{-1}{237}+\dfrac{1}{2371}-\dfrac{1}{23711}\right)}=\dfrac{-4}{5}\)
Vậy \(M=\dfrac{-4}{5}\)
2,
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2011}=\dfrac{2011}{a}=\dfrac{a+b+c+2011}{b+c+2011+a}=\dfrac{a+b+c+2011}{a+b+c+2011}=1\)
\(\dfrac{a}{b}=1\Rightarrow a=b\left(1\right)\\ \dfrac{b}{c}=1\Rightarrow b=c\left(2\right)\)
Từ (1) và (2) ta có: \(a=c\)
\(\Rightarrow a+b-c=a+a-a=a\)
1)
b)
\(A=27^{20}+3^{61}+9^{31}\\ =\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\\ =3^{60}+3^{61}+3^{62}\\ =3^{60}\cdot\left(1+3+3^2\right)\\ =3^{60}\cdot\left(1+3+9\right)\\ =3^{60}\cdot13⋮13\)
Vậy \(A⋮13\)
a,
\(\left(-99\right)^{20}=\left(-99\right)^{2\cdot10}=\left[\left(-99\right)^2\right]^{10}=9801^{10}\\ 9999^{100}=\left(9999^{10}\right)^{10}>\left(9999^{10}\right)^1=9999^{10}\)
Vì \(9801^{10}< 9999^{10}< \left(9999^{10}\right)^{10}=9999^{100}\Rightarrow\left(-99\right)^{20}< 9999^{100}\)
Vậy \(\left(-99\right)^{20}< 9999^{100}\)
1/
a) (-99)20 = 9920
Vì 99 < 9999
20 < 100
Nên 9920 < 9999100
Vậy (-99)20 < 9999100
b) \(A=27^{20}+3^{61}+9^{31}\)
\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)
\(=3^{60}+3^{61}+3^{62}\)
\(=3^{60}\left(1+3+3^2\right)\)
\(=3^{60}.13⋮13\)
Vậy A chia hết cho 13.
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2011}=\dfrac{2011}{a}=\dfrac{a+b+c+2011}{b+c+2011+a}=1\)
\(\Rightarrow\dfrac{a}{b}=1;\dfrac{b}{c}=1\Rightarrow a=b=c\) (*)
Thay (*) vào a + b - c: a + a - a = a
Vậy a + b - c = a.
3. \(M=\dfrac{\dfrac{4}{237}-\dfrac{4}{2371}+\dfrac{4}{23711}}{-\dfrac{5}{237}+\dfrac{5}{2371}-\dfrac{5}{23711}}\)
\(=\dfrac{4\left(\dfrac{1}{237}-\dfrac{1}{2371}+\dfrac{1}{23711}\right)}{-5\left(\dfrac{1}{237}-\dfrac{1}{2371}+\dfrac{1}{23711}\right)}\)
\(=-\dfrac{4}{5}\)
c. \(\dfrac{x+2}{-20}=\dfrac{-5}{x+2}\)
\(\Rightarrow\) x +2 . x + 2 = -5 . (- 20)
\(\left(x+2^{ }\right)^2\) = 100
\(\left(x+2^{ }\right)^2\) =\(10^2\)
\(\Rightarrow\) x + 2 = 10
x = 10 - 2
x = 8
Vậy x = 8
(Tick mk nha !!!)
d.-10+ (2x + 5)3 =17
(2x +5)3 =17-(-10)
(2x +5)3 =27
(2x +5)3 =33
suy ra 2x +5 =3
2x =3-5
2x =-2
x =-2/2=-1
ko có dấu suy ra
\(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
\(\Rightarrow\dfrac{59-x}{41}+1+\dfrac{57-x}{43}+1+\dfrac{55-x}{45}+1+\dfrac{53-x}{47}+1+\dfrac{51-x}{49}+1=0\)\(\Rightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{100-x}{49}=0\)
\(\Rightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)=0\)
\(\Rightarrow100-x=0\Rightarrow x=100\)
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
5.x - 9 = 5 + 3.x
5x - 3x = 5 + 9
2x = 14
x = 14 : 2
x = 7
--------------------
(5x + 1)² = 36/49
5x + 1 = 6/7 hoặc 5x + 1 = -6/7
*) 5x + 1 = 6/7
5x = 6/7 - 1
5x = -1/7
x = -1/7 : 5
x = -1/35
*) 5x + 1 = -6/7
5x = -6/7 - 1
5x = -13/7
x = -13/7 : 5
x = -13/35
Vậy x = -13/35; x = -1/35
--------------------
2ˣ⁻¹ = 16
2ˣ⁻¹ = 2⁴
x - 1 = 4
x = 4 + 1
x = 5