Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x:
1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)
\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)
Vậy x = 5
2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)
\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)
\(\Leftrightarrow-4x+15=-7\)
\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)
Vậy x = \(\frac{11}{2}\)
3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6
\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)
\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)
\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)
Vậy x = -1
4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3
\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)
\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)
\(\Leftrightarrow14x=0\Leftrightarrow x=0\)
Vậy x = 0
5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)
\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27
\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)
\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)
\(\Leftrightarrow-x^3=27\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
7. 3x (8x - 4) - 6x (4x - 3) = 30
\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)
\(\Leftrightarrow0=30\) ( vô lý)
Vậy pt vô nghiệm
8. 3x (5 - 2x) + 2x (3x - 5) = 20
\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)
\(\Leftrightarrow5x=20\Leftrightarrow x=4\)
Vậy x = 4
a) (x-5)3-x+5=0
⇔(x-5)3-(x-5)=0
⇔ (x-5)[(x-5)2-1]=0
⇔ (x-5)(x-5-1)(x-5+1)=0
⇔ (x-5)(x-6)(x-4)=0
⇔ \(\left[{}\begin{matrix}x-5=0\\x-6=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
vậy ...
b) (x2+1)(x-2)+2x=4
⇔ (x2+1)(x-2)+2x-4=0
⇔ (x2+1)(x-2)+(2x-4)=0
⇔ (x2+1)(x-2)+2(x-2)=0
⇔(x-2)(x2+1+2)=0
⇔ (x-2)(x2+3)=0
⇔\(\left[{}\begin{matrix}x-2=0\\x^2+3=0\end{matrix}\right.\left[{}\begin{matrix}x=2\\x^2=-3\left(voli\right)\end{matrix}\right.\)
vậy
a)\(-3x\left(x+2\right)^2+\left(x+3\right)\left(x-1\right)\left(x+1\right)-\left(2x-3\right)^2\)
\(=-3x.\left(x^2+2.x.2+2^2\right)+\left(x^2+x+3x-3\right).\left(x+1\right)-\left(2x\right)^2-2.2.x.\left(-3\right)+\left(-3\right)^2\)
\(=-3x.\left(x^2+4x+4\right)+\left(x^2+\left(x+3x\right)-3\right).\left(x+1\right)-4x+12x+9\)
\(=-3x.\left(x^2+4x+4\right)+\left(x^2+4x-3\right)\left(x+1\right)-4x+12x+9\)
\(=-3x^3-12x^2-12x+x^3+4x^2-3x+x^2+4x-3-4x+12x+9\)
\(=\left(-3x^3-x^3\right)+\left(-12x^2+4x^2+x^2\right)+\left(-12x-3x+4x-4x+12x\right)+\left(-3+9\right)\)
\(=-2x^3-7x^2-3x+6\)
b)\(\left(x-3\right)\left(x+3\right)\left(x+2\right)-\left(x-1\right)\left(x^2-3\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)
\(=\left(x.\left(x+3\right)-3\left(x+3\right)\right)\left(x+2\right)-\left(x.\left(x^2-3\right)-1\left(x^2-3\right)\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)
\(=\left(x.x+x.3-3.x+\left(-3\right).3\right)\left(x+2\right)-\left(x.x^2+x.\left(-3\right)-1.x^2+\left(-1\right).\left(-3\right)\right)-5x.x+\left(-5x\right).4-x^2-2x5+5^2\)
\(=\left(x^2+3x-3x-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)
\(=\left(x^2+\left(3x-3x\right)-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)
\(=\left(x^2-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)
\(=x^3+2x^2-9x-15-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)
\(=\left(x^3-x^3\right)+\left(2x^2-x^2-5x^2-x^2\right)+\left(-9x-3x-20x-10x\right)+\left(-18+3+25\right)\)
\(=-5x^2-42x+10\)
a: |x-1|=-3
mà |x-1|>=0
nên \(x\in\varnothing\)
b: |2x+1|=0
=>2x+1=0
hay x=-1/2
c: \(\left|3-2x\right|=4\)
=>|2x-3|=4
=>2x-3=4 hoặc 2x-3=-4
=>2x=7 hoặc 2x=-1
=>x=7/2 hoặc x=-1/2
\(\Leftrightarrow\dfrac{4}{x-1}-\dfrac{5}{x-2}=-3\)
\(\Leftrightarrow4x-8-5x+5+3\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow3\left(x^2-3x+2\right)-x-3=0\)
\(\Leftrightarrow3x^2-9x+6-x-3=0\)
\(\Leftrightarrow3x^2-10x+3=0\)
=>(3x-1)(x-3)=0
=>x=1/3 hoặc x=3
x = 3