K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,a là số nguyên tố ⇒4a+11≥4.2+11⇒4a+11≥4.2+11 (Vì 4a+11 nhỏ nhất khi a nhỏ nhất ⇒a=2⇒a=2 )

Các số nguyên tố bé hơn 30 và lớn hơn 15 là :19;23;29

Xảy ra 3 trường hợp:

Nếu 4a+11=19⇒a=24a+11=19⇒a=2 (thoả mãn)

Nếu 4a+11=23⇒a=34a+11=23⇒a=3 (thoả mãn)

Nếu 4a+11=29⇒a=4,54a+11=29⇒a=4,5 (không thoả mãn)

Vậy a=3 hoặc a=2

b,Với P=3p+2=5p+4=7p+2 và P+4 là số nguyên tố

Với P>3 có 3k+1 hoặc 3k+2

+ Nếu P=3k+1 p+2=3k+1+2=3k+33( loại)

+ Nếu P=3k+2 p+4 =3k+2+4=3k+63(loại)

Vậy P=3

c,Nếu p = 3k (k  N ) và p là số nguyên tố

=> k = 1 => p = 3

=> p + 10 = 3 + 10 = 13 (Thỏa mãn là số nguyên tố)

=> p + 14 = 3 + 14 = 17 (Thỏa mãn là số nguyên tố)

Nếu p = 3k + 1

=> p + 14 = 3k + 1 + 14 =3k + 15 = 3(k + 5)  chia hết cho 3 (loại)

Nếu p = 3k + 2 

=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4)  chia hết cho 3 (loại)

Vậy p = 3 thì p + 10 và p + 14 đều là số nguyên tố

13 tháng 6 2019

a)  Theo bài ra ta có :

4p + 11 < 30 

=> 4p < 30 - 11

=> 4p < 19

=> p < 19 : 4

=> p < 4,75

Vì p là số nguyên tố 

=> p \(\in\){2;3}

Vậy p \(\in\){2;3}

b) +) Nếu p = 2

=> p + 2 = 2 + 2 = 4 (hợp số) 

=> p = 2 loại 

 +) Nếu p = 3

=> p + 2 = 3 + 2 = 5 (số nguyên tố) => chọn

     p + 4 = 3 + 4 = 7 (số nguyên tố) => chọn 

=> p = 3 chọn

+) Nếu p > 3

=> p = 3k + 1 hoặc p = 3k + 2 (k \(\in\)N*)

Nếu p = 3k + 1

=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3k + 3.1 = 3(k+1) \(⋮\)3 (hợp số)

=> p = 3k + 1 loại

Nếu p = 3k + 2

=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3.2 = 3(k + 2) \(⋮\)3 (hợp số)

=> p = 3k + 2 loại

Vậy p = 3

c)  +) Nếu p = 2

=> p + 10 = 2 + 10 = 12 (hợp số) 

=> p = 2 loại 

 +) Nếu p = 3

=> p + 10 = 3 + 10 = 13 (số nguyên tố) => chọn

     p + 14 = 3 + 14 = 17 (số nguyên tố) => chọn 

=> p = 3 chọn

+) Nếu p > 3

=> p = 3k + 1 hoặc p = 3k + 2 (k \(\in\)N*)

Nếu p = 3k + 1

=> p + 14 = 3k + 1 + 14 = 3k + 15 = 3k + 3.5 = 3(k+5) \(⋮\)3 (hợp số)

=> p = 3k + 1 loại

Nếu p = 3k + 2

=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3k + 3.4 = 3(k + 4) \(⋮\)3 (hợp số)

=> p = 3k + 2 loại

Vậy p = 3

a: TH1: p=3

=>p+14=17 và 4p+7=4*3+7=12+7=19(nhận)

TH2: p=3k+1

=>p+14=3k+15=3(k+5)

=>Loại

TH3: p=3k+2

4p+7=4(3k+2)+7=12k+8+7

=12k+15

=3(4k+5) chia hết cho 3

=>Loại

b: TH1: p=5

=>p+6=11; p+12=17; p+8=13; p+24=29

=>NHận

TH2: p=5k+1

=>p+24=5k+25=5(k+5)

=>Loại

TH3: p=5k+2

p+8=5k+10=5(k+2) chia hết cho 5

=>Loại

TH4: p=5k+3

p+12=5k+15=5(k+3)

=>loại
TH5: p=5k+4

=>p+6=5k+10=5(k+2)

=>Loại

8 tháng 3 2020

a) Với p=2 => p+10=12 không là số nguyên tố (loại)

Với p=3 => p+10=13 và p+14=17 là các số nguyên tố  (thỏa mãn)

p là số nguyên tố lớn hơn hoặc bằng 3

=> p có dạng 3k+1 ; 3k+2  ( k thuộc N*)

Với p=3k+1 => p+14=3k+15 chia hết cho 3  (loại)

Với p=3k+2 => p+10=3k+12 chia hết cho 3  (loại)

Vậy p=3.

8 tháng 3 2020

a) Nếu p =2 thì p+10= 12; p+14= 16 ( loại)

Vì p là số nguyên tố nên p có dạng 3k; 3k+1; 3k+2

Nếu p =3k thì p = 3 ( vì p là số nguyên tố) khi đó: p+10 = 13; p+14=17 

Nếu p=3k+2 thì p+10= 3k+2+10=  3k+12= 3( k+4) ( vì 3 chia hết cho 3 nên 3(k+4) chia hết cho 3=> p+10 là hợp số trái với đề bài)

Nếu p= 3k+1 thì = 3k+1+14= 3k+15= 3(k+5) (vì...................................................................................................................)

Vậy.......

Chỗ vì thì bn vì như dòng trên nha, còn phần b làm tương tự 

7 tháng 3 2020

a, Th1 : P = 2 => P + 10 = 12 chia hết cho 2 => P là hợp số < Loại >

Th2 : P > 2 => P sẽ có dạng là : 3k ; 3k +1 ; 3k + 2 ( k thuộc N*)

+, Với P = 3k => P = 3 ( P là SNT ) => P + 10 = 13 ; P + 14 = 17 , là SNT < TM >

+ Với P = 3k + 1 => P + 14 = 3k + 1 + 14 = 3k + 15 = 3(k+5) chia hết cho 3 => là hợp số < Loại >

+ Với P = 3k +2 => P + 10 = 3k + 2 + 10 = 3k + 12 = 3(k+4) chia hết cho 3 => là hợp số < Loại >

Vậy P = 3

b, Tương tự 

22 tháng 11 2021

ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc