Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n + 3 chia hết cho 2n + 6
(2n+6).2 chia hết cho 2n+6 => 4n + 12 chia hết cho 2n + 6
4n+3 chia hết cho 2n +6
4n+12 chia hết cho 2n + 6
=> 4n + 12 - 4n - 3 = 9 chia hết cho 2n +6
2n +6 thuộc {1;3;9}
n thuộc {-2,5;-1,5;1,5}
Trong các phần tử trên, không có phần tử nào thuộc N
=> Không tìm được số tự nhiên n sao cho 4n+3 chia hết cho 2n+6
a) ta có: n^2 - 1 chia hết cho n + 2
=> n^2 + 2n - 2n - 4 + 3 chia hết cho n +2
n.(n+2) - 2.(n+2) + 3 chia hết cho n +2
(n+2).(n-2) + 3 chia hết cho n + 2
mà (n+2).(n-2) chia hết cho n + 2
=> 3 chia hết cho n + 2
=> ...
rùi bn tự lm típ nha
b) ta có: 4n + 3 chia hết cho 3n - 1
=> 12n + 9 chia hết cho 3n - 1
12n - 4 + 13 chia hết cho 3n - 1
4.(3n - 1) + 13 chia hết cho 3n - 1
mà 4.(3n-1) chia hết cho 3n - 1
...
câu c mk ko bk! xl bn nha
d) n^2 + 2n + 3 chia hết cho n + 2
=> n.(n+2) + 3 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
e) ta có: 3 - 2n chia hết cho 5n - 1
=> 15 - 10n chia hết cho 5n - 1
13 - 10n + 2 chia hết cho 5n - 1
13 - 2.(5n - 1) chia hết cho 5n - 1
mà 2.(5n-1) chia hết cho 5n-1
...
phần g bn dựa vào phần e mak lm nha
Ta có : 3n chia hết cho 5-2n
Suy ra :2x3n chia hết cho 5-2n
hay 6n chia hết cho 5-2n (1)
Lại có :5-2n chia hết cho 5-2n
Suy ra :3x(5-2n) chia hết cho 5-2n
hay 15-6n chia hết cho 5-2n (2)
Từ (1) và (2) suy ra
6n+(15-6n) chia hết cho 5-2n
hay 15 chia hết cho 5-2n
Suy ra 5-2n E Ư(15)={1;3;5;15}
-Xét trường hợp 1
5-2n=1
2n =5-1
2n =4
n =2 (thỏa mãn n E N)
-Xét trường hợp 2
5-2n =3
2n =5-3
2n =2
n =1 (thỏa mãn n E N)
-Xét trường hợp 3
5-2n=5
2n =5-5
2n =0
n =0 (thỏa mãn n E N)
-Xét trường hợp 4
5-2n=15
2n =5-15
2n =-10
n =-5 (loại vì n không thuộc N)
Vậy n E {0;1;2}
a) ta có 2n+3=2(n+2)-1
=> 1 chia hết cho n+2
n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2
Nếu n+1=1 => n=0
Vậy n={-2;0}
b) Ta có n2+2n+5=n(n+2)+5
=> 5 chia hết cho n+2
n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:
\(n-2\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(n\) | \(3\) | \(4\) | \(5\) | \(8\) |
Vậy \(n\in\left\{3;4;5;8\right\}\)
b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:
\(n-1\) | \(1\) | \(2\) | \(4\) |
\(n\) | \(2\) | \(3\) | \(5\) |
Vậy \(n\in\left\{2;3;5\right\}\)
\(4n+3⋮3n+2\)
\(12n+9⋮3n+2\)
\(4\left(3n+2\right)-3⋮3n-2\)
\(-3⋮3n+2\)hay \(3n+2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
dễ rồi tự làm nhé !
\(n-5⋮2n+3\)
\(2n-10⋮2n+3\)
\(2n+3-13⋮2n+3\)
\(-13⋮2n+3\)hay \(2n+3\inƯ\left(-13\right)=\left\{\pm1;\pm13\right\}\)
dễ rồi tự làm nhé !