Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ mỗi vế cho 1, ta có:
\(\frac{b-16a+16c}{4a}=\frac{c-16b+16a}{4b}=\frac{a-16c+16b}{4c}=\frac{a+b+c}{4.\left(a+b+c\right)}=\frac{1}{4}\)(vì a,b,c > 0 nên a+b+c>0)
\(\Leftrightarrow\hept{\begin{cases}b+16c=17a\\c+16a=17b\\a+16b=17c\end{cases}}\Leftrightarrow a=b=c\)
tự thay vào
lấy 100 +1 ,99 +2 , 3+98 .VẬY MỖI CẶP SỐ ĐỀU CO TỔNG LÀ 101.........VÌ TỪ 1 ... 100 ĐỀU CÓ 50 CẶP NHƯ VẬY , TA LẤY 101x50 =5050
\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}.\)
TH1: \(a+b+c=0\)
=> \(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)
=> a + b - 7 + b + c + 3 - a - c - 4 =0
=> 2b -8 =0
=> 2b = 4
=> b = 2.
=> a = 5; c = - 5
=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017 ( -5) = -9963.
TH2: a + b + c khác 0.
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}\)
\(=\frac{a+b-7+b+c+3+a+c+4}{4c+4a+4b}=\frac{2a+2b+2c}{4a+4b+4c}=\frac{1}{2}\)(1)
=> \(\hept{\begin{cases}a+b-7=2c\\b+c+3=2a\\a+c+4=2b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c+7\left(1\right)\\b+c=2a-3\left(2\right)\\a+c=2b-4\left(3\right)\end{cases}}\)
Từ (1) => \(a+b+c=1\left(4\right)\)
Từ (1); (4) => 2c + 7 + c = 1 => 3c = -6 => c = -2
Từ (2); (4) => 2a - 3 + a = 1 => 3a = 4 => a = 4/3
Từ (3); (4) => 2b - 4 + b = 1 => 3b = 5 => b = 5/3
=> A = 20a + 11b + 2017c = \(20.\frac{4}{3}+11.\frac{5}{3}+2017.\left(-2\right)=-3989\)
\(\frac{a+b+c}{2}\) =\(\frac{a+b-7}{4c}\)=\(\frac{b+c+3}{4a}\)=\(\frac{a+c+4}{4b}\)
Xảy ra 2 trường hợp, mình làm trường hợp 1 thôi.
TH1 : \(a+b+c=0\)
=>\(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)
=> a + b - 7 + b + c + 3 - a - c - 4 = 0
=> 2b - 8 = 0
=> 2b = 4
=> b = 2
=> a = 5 , c = -5
=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017.(-5) = - 9963
\(\dfrac{a+4b-c}{c}=\dfrac{c+4a-b}{b}=\dfrac{b+4c-a}{a}\\ \Rightarrow\dfrac{a+4b+c}{c}=\dfrac{c+4a+b}{b}=\dfrac{b+4c+a}{a}\\ =\dfrac{6\left(a+b+c\right)}{a+b+c}=6\\ \Rightarrow\dfrac{1}{a+b+c}=6\\ \Rightarrow a+b+c=\dfrac{1}{6}\)
Tới này dễ rồi
!!
Nếu a + b + c = 0 thì \(a+b+5=0,b+c-10=0,a+c+5=0\)
Tìm được a = -10 , b = 5 và c = 5
Khi đó: \(A=\left(-25\right).\left(-10\right)+12.5-2018.5=250+60-10090=-9780\)
Nếu \(a+b+c\ne0\) thì áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a+b+c}{2}=\frac{a+b+5}{4c}=\frac{b+c-10}{4a}=\frac{a+c+5}{4b}\)
\(=\frac{\left(a+b+5\right)+\left(b+c-10\right)+a+c+5}{4c+4a+4b}=\frac{2\left(a+b+c\right)}{4\left(a+b+c\right)}=\frac{1}{2}\)(1)
Tìm được a + b + c = 1
Từ (1), ta được: \(\frac{a+b+5}{4c}=\frac{1}{2}\Rightarrow2a+2b+10=4c\)
\(\Rightarrow2\left(a+b+c\right)+10=4c+2c\Rightarrow12=6c\Rightarrow c=2\)
TỪ (1) cũng có: \(\frac{b+c-10}{4a}=\frac{1}{2}\Rightarrow2b+2c-20=4a\)
\(\Rightarrow2\left(a+b+c\right)-20=6a\Rightarrow-18=6a\Rightarrow a=-3\)
\(a+b+c=1\Rightarrow\left(-3\right)+b+2=1\Rightarrow b=2\)
Khi đó: \(A=\left(-25\right).\left(-3\right)+12.2-2018.2=75+24-4036=-3937\)
Vậy A = -9780 hoặc A = -3937
\(\frac{4a}{b}=\frac{4b}{c}=\frac{4c}{a}=\frac{4a+4b+4c}{b+c+a}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)
=> 4b=4a =>b=a
=> 4b=4c => b=c
=> a=b=c