K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2022

\(\dfrac{4}{5}.\dfrac{6}{2}-\dfrac{4}{5}.\dfrac{8}{9}-\dfrac{1}{2}=\dfrac{12}{5}-\dfrac{32}{45}-\dfrac{1}{2}=\dfrac{76}{45}-\dfrac{1}{2}=\dfrac{107}{90}\)

\(=\dfrac{4}{5}.\dfrac{6}{2}-\dfrac{4}{5}.\dfrac{8}{9}-\dfrac{1}{2}.1\)

\(=\dfrac{4}{5}.\left(\dfrac{6}{2}-\dfrac{1}{2}\right).1\)

\(=\dfrac{4}{5}.\dfrac{5}{2}.1\)

\(=2.1\)

\(=2\)

`@` `\text {Ans}`

`\downarrow`

`a)`

\(\dfrac{7}{5}\cdot\dfrac{8}{19}+\dfrac{7}{5}\cdot\dfrac{12}{19}-\dfrac{7}{5}\cdot\dfrac{1}{19}\)

`=`\(\dfrac{7}{5}\cdot\left(\dfrac{8}{19}+\dfrac{12}{19}-\dfrac{1}{19}\right)\)

`=`\(\dfrac{7}{5}\cdot\dfrac{19}{19}=\dfrac{7}{5}\cdot1=\dfrac{7}{5}\)

`b)`

\(-\dfrac{3}{5}\cdot\dfrac{5}{7}+\left(-\dfrac{3}{5}\right)\cdot\dfrac{3}{7}+\left(-\dfrac{3}{5}\right)\cdot\dfrac{6}{7}\)

`=`\(-\dfrac{3}{5}\cdot\left(\dfrac{5}{7}+\dfrac{3}{7}+\dfrac{6}{7}\right)\)

`=`\(-\dfrac{3}{5}\cdot\dfrac{14}{7}\)

`=`\(-\dfrac{3}{5}\cdot2=-\dfrac{6}{5}\)

`c)`

\(10\dfrac{2}{9}+\left(2\dfrac{2}{5}-7\dfrac{2}{9}\right)\)

`=`\(10\dfrac{2}{9}+2\dfrac{2}{5}-7\dfrac{2}{9}\)

`=`\(\left(10\dfrac{2}{9}-7\dfrac{2}{9}\right)+2\dfrac{2}{5}\)

`=`\(3+2\dfrac{2}{5}=\dfrac{27}{5}\)

`d)`

\(6\dfrac{3}{10}-\left(3\dfrac{4}{7}+2\dfrac{3}{10}\right)\)

`=`\(6\dfrac{3}{10}-3\dfrac{4}{7}-2\dfrac{3}{10}\)

`=`\(\left(6\dfrac{3}{10}-2\dfrac{3}{10}\right)-3\dfrac{4}{7}\)

`=`\(4-3\dfrac{4}{7}=\dfrac{3}{7}\)

23 tháng 7 2023

a) \(\dfrac{7}{5}.\dfrac{8}{19}+\dfrac{7}{5}.\dfrac{12}{19}-\dfrac{7}{5}.\dfrac{1}{19}\)

\(=\dfrac{7}{5}.\left(\dfrac{8}{19}+\dfrac{12}{19}-\dfrac{1}{19}\right)\)

\(=\dfrac{7}{5}.1\)

\(=\dfrac{7}{5}\)

b) \(\dfrac{-3}{5}.\dfrac{5}{7}+\dfrac{-3}{5}.\dfrac{3}{7}+\dfrac{-3}{5}.\dfrac{6}{7}\)

\(=\dfrac{-3}{5}.\left(\dfrac{5}{7}+\dfrac{3}{7}+\dfrac{6}{7}\right)\)

\(=\dfrac{-3}{5}.2\)

\(=\dfrac{-6}{5}\)

c) \(10\dfrac{2}{9}+\left(2\dfrac{2}{5}-7\dfrac{2}{9}\right)\)

\(=\dfrac{92}{9}+\dfrac{12}{5}-\dfrac{65}{9}\)

\(=\dfrac{92}{9}-\dfrac{65}{9}+\dfrac{12}{5}\)

\(=3+\dfrac{12}{5}\)

\(=\dfrac{15}{5}+\dfrac{12}{5}\)

\(=\dfrac{27}{5}\)

d) \(6\dfrac{3}{10}-\left(3\dfrac{4}{7}+2\dfrac{3}{10}\right)\)

\(=\dfrac{63}{10}-\dfrac{25}{7}-\dfrac{23}{10}\)

\(=\dfrac{63}{10}-\dfrac{23}{10}-\dfrac{25}{7}\)

\(=4-\dfrac{25}{7}\)

\(=\dfrac{28}{7}-\dfrac{25}{7}\)

\(=\dfrac{3}{7}\)

Chúc bạn học tốt

 

19 tháng 4 2020

a) e  chỉ  cần nhân chúng lại với nhau =  cách tách từng cái ra

b)đặt 4/2.5+4/5.8+4/8.11+......+4/62.65 là S

\(.S=\frac{4}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{62.65}\right)\)

\(S=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{62}-\frac{1}{65}\right)\)

\(S=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{65}\right)\)

\(S=\frac{4}{3}\left(\frac{65}{130}-\frac{2}{130}\right)\)

\(S=\frac{4}{3}\left(\frac{63}{130}\right)\)

\(S=\frac{42}{65}\)

Bài 2 : \(\frac{15+a}{29+a}=\frac{3}{5}\)\(\Leftrightarrow\left(15+a\right)5=\left(29+a\right)3\Leftrightarrow75+5a=87+3a\Leftrightarrow5a-3a=87-75\Rightarrow2a=12\Rightarrow a=6\)

vậy a =6

cái nài từ 2 năm tr rùi h bạn có cần nxko ạ:)))

29 tháng 3 2021

https://hoc247.net/hoi-dap/toan-6/chung-minh-a-1-1-2-1-3-1-100-khong-phai-so-tu-nhien-faq442360.html

Em tk trang đó nha

29 tháng 3 2021

Ta có 

\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)

=> A > 1 do \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\ne0\)

\(\dfrac{1}{2}>\dfrac{1}{100}\)

\(\dfrac{1}{3}>\dfrac{1}{100}\)

................

\(\dfrac{1}{100}=\dfrac{1}{100}\)

=> \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}>\dfrac{1}{100}.99\) (do dãy có 99 số) = \(\dfrac{99}{100}\)

=> A < \(1+\dfrac{99}{100}< 1+\dfrac{100}{100}=1+1=2\)

=> 1 < A < 2

Vậy A không phải số tự nhiên

 

\(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{9}{10!}\)

\(A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{10-1}{10!}\)

\(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{10}{10!}-\frac{1}{10!}\)

\(A=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}+...+\frac{1}{9!}-\frac{1}{10!}\)

\(A=1-\frac{1}{10!}\)

\(\Rightarrow A< 1\left(đpcm\right)\)