Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tìm GTNN
\(A=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+16\right)+2012\)
\(=\left(x+y\right)^2+\left(x-4\right)^2+2012\)
Ta có :
\(\left(x+y\right)^2\ge0\) với mọi x
\(\left(x-4\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
Dấu = xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+y\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)
Vậy \(Min_A=2012\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)
A=2x2+y2+2xy-8x+2028=(x2+2xy+y2)+(x2-8x+16)+2012=(x+y)2+(x-4)2+2012
Vì (x+y)2\(\ge\)0\(\forall\)x,y
(x-4)2\(\ge0\forall x\)
=>(x+y)2+(x-4)2\(\ge0\)
=>(x+y)2+(x-4)2+2012\(\ge2012\forall x,y\)
Đạt được khi và chỉ khi:
\(\left\{{}\begin{matrix}x-4=0\rightarrow x=4\\x+y=0\rightarrow y=-4\end{matrix}\right.\)
Vậy Amin=2012<=>x=4,y=-4
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\\ 3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+2x^2+36=0\\ \Leftrightarrow\left(x-y\right)^2+2x^2+36=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+2x^2+36\ge36>0\right]\\ 3x^2+6y^2-12x-20y+40=0\\ \Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+28\right)=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-\dfrac{10}{3}y+\dfrac{14}{3}\right)=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}+\dfrac{17}{9}\right)=0\)
\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)