Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(A=2x^3y^4-5x\cdot x^2y^4+xy^2\cdot x^2y^2=-2x^3y^4=-2\cdot\left(-1\right)^3\cdot\dfrac{1}{16}=\dfrac{1}{8}\)
2: \(B=9x^4y^6\cdot\left(-4xy\right)+19x^3y^5\cdot\left(-2\right)x^2y^2\)
\(=-36x^5y^7-38x^5y^7\)
\(=-74x^5y^7=-74\cdot\left(-1\right)^5\cdot2^7=9472\)
3: \(f\left(-1\right)=3\cdot\left(-1\right)^4+7\cdot\left(-1\right)^3+4\cdot\left(-1\right)^2-2\cdot\left(-1\right)-2=0\)
\(f\left(1\right)=3+7+4-2-2=10\)
\(\left|x-3\right|-2x=1\left(đk:x\ge-\dfrac{1}{2}\right)\)
\(\Leftrightarrow\left|x-3\right|=1+2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1+2x\left(x\ge3\right)\\x-3=-1-2x\left(-\dfrac{1}{2}\le x< 3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)
\(2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{3x+y}{15+2}=\dfrac{1}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{17}.5=\dfrac{5}{17}\\y=\dfrac{1}{17}.2=\dfrac{2}{17}\end{matrix}\right.\)
\(x^3-3x^2-3x-1=\left(x-4\right)\left(x^2+x+1\right)+3\)
\(\Rightarrow x^3-3x^2-3x-1\) chia hết \(x^2+x+1\) khi \(3⋮x^2+x+1\)
\(\Rightarrow x^2+x+1=Ư\left(3\right)\) (1)
Mà x nguyên dương \(\Rightarrow x^2+x+1\ge1^2+1+1=3\) (2)
(1);(2) \(\Rightarrow x^2+x+1=3\)
\(\Rightarrow x=1\)
\(\Leftrightarrow3x-2-2x-3=-1\)
\(\Leftrightarrow x=-1+2+3\)
\(\Leftrightarrow x=4\)
\(\left(3x-2\right)-\left(2x+3\right)=-1\)
\(\Leftrightarrow3x-2-2x-3=-1\)
\(\Leftrightarrow x=4\)