K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

\(=\frac{3}{5}.\frac{17}{2}-1.\frac{22}{3}=\frac{51}{10}-\frac{22}{3}=-\frac{67}{30}\)

15 tháng 4 2022

\(=>x\left(\dfrac{1}{2}+\dfrac{2}{3}\right)=\dfrac{10}{3}+1=\dfrac{13}{3}\)

\(=>x=\dfrac{13}{3}:\left(\dfrac{1}{2}+\dfrac{2}{3}\right)=\dfrac{13}{3}:\dfrac{7}{6}=\dfrac{26}{7}\)

15 tháng 4 2022

5/6x - 1 = 10/3

5/6x = 10/3 + 1 = 13/3

X = 13/3 : 5/6 = 26/5

20 tháng 3 2023

\(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\)

\(A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2023}\\ A=\dfrac{2023}{2023}-\dfrac{1}{2023}\\ A=\dfrac{2022}{2023}\)

20 tháng 3 2023

 

�=21.3+23.5+...+297.99

�=11−13+13−15+...+197−199

�=11−199

=

=12−198tự làm tiếp nha ( giống câu a)

13 tháng 3 2016

còn chi tiết đây

a)1/5.8+1/8.11+1/11.14+...+1/x.(x+3)=101/1540
1/(5.8)+1/(8.11)+1/(11.14)+...1/x.(… =101/1540
3/(5.8)+3/(8.11)+...+3/x(x+3)=3.(10…
1/5-1/8+1/8-1/11+...+1/x-1/(x+3)=30…
1/5-1/(x+3)=303/1540
1/(x+3)=1/5-303/1540=1/308
=>x=305

13 tháng 3 2016

lời giải nè : ấn vô dòng đen đen ở dưới ấy nhé

Tìm x, biết:a) 1/5.8 + 1/8.11 + 1/11.14 + ... + 1/x.(x+3)= 101/1540b) 1+ 1/3 + 1/6 + 1/10 +...+ 1/x.(x+1):2 = $1\frac{1991}{1993}$119911993

mk làm phần a thui nhé

a. A = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6

A = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6

A =  1/2 - 1/6

A= 3/6 - 1/6

A = 1/3

10 tháng 11 2019

\(B=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\)

\(b=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)

\(b=\frac{1}{2}-\frac{1}{14}\)

\(b=\frac{3}{7}\)

\(d=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)

\(d=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)

\(d=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(d=1-\frac{1}{11}\)

\(d=\frac{10}{11}\)

\(e=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)

\(e=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+\frac{1}{17\cdot20}\)

\(e=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{17\cdot20}\right)\)

\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(e=\frac{1}{3}\cdot\frac{9}{20}=\frac{3}{20}\)

Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)

⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)

⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)

Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:

2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)