Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\)\(\left|x-1\right|+3x=1\)
\(\Leftrightarrow\)\(\left|x-1\right|=1-3x\)
+) Với \(x-1\ge0\)\(\Leftrightarrow\)\(x\ge1\) ta có :
\(x-1=1-3x\)
\(\Leftrightarrow\)\(x+3x=1+1\)
\(\Leftrightarrow\)\(4x=2\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\) ( không thỏa mãn )
+) Với \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\) ta có :
\(1-x=1-3x\)
\(\Leftrightarrow\)\(-x+3x=1-1\)
\(\Leftrightarrow\)\(2x=0\)
\(\Leftrightarrow\)\(x=0\) ( thỏa mãn )
Vậy \(x=0\)
Chúc bạn học tốt ~
\(2)\)\(B=\frac{3}{\left|x+5\right|+2018}\le\frac{3}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x+5\right|=0\)
\(\Leftrightarrow\)\(x=-5\)
Vậy GTLN của \(B\) là \(\frac{3}{2018}\) khi \(x=-5\)
Chúc bạn học tốt ~
\(\left|3x+2\right|=\left|4x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x-3\\3x+2=3-4x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-5\\7x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{7}\end{matrix}\right.\)
\(\left|2+3x\right|=\left|4x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2+3x=4x-3\\2+3x=3-4x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{7}\end{matrix}\right.\)
a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)
Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)
b, Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)
Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)
1) \(\left(3x-2a\right)^3\)
\(=\left(3x\right)^3-3\left(3x\right)^2\cdot2a+3\cdot3x\cdot\left(2a\right)^2-\left(2a\right)^3\)
\(=27x^3-3\cdot9x^2\cdot2a+3\cdot3x\cdot4a^2-8a^3\)
\(=27x^3-54ax^2+36a^2x-8a^3\)
2) \(\left(\dfrac{x+y}{3}\right)^3\)
\(=\dfrac{\left(x+y\right)^3}{27}\)
\(=\dfrac{x^3+3x^2y+3xy^2+y^3}{27}\)
3) \(\left(3x+\dfrac{y}{3}\right)^3\)
\(=\dfrac{\left(3x+y\right)^3}{27}\)
\(=\dfrac{27x^3+27x^2y+9xy^2+y^3}{27}\)
\(\left|2x-\frac{1}{2}\right|+1=3x\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)
Đặt P(x)=0
\(\Leftrightarrow x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=17>0\)
Do đó; Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
câu b:
\(\dfrac{x}{2}=\dfrac{y}{6}\\ \dfrac{x}{2}=\dfrac{y}{6}=\dfrac{x-y}{2-6}=\dfrac{10}{-4}=\dfrac{5}{-2}\\ x=\dfrac{5}{-2}.2=\dfrac{10}{-2}=-5\\ y=\dfrac{5}{-2}.6=-15\)
câu a:
\(\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\\ \dfrac{3x}{3.4}=\dfrac{2y}{2.2}=\dfrac{4z}{4.3}\\ \)
ta có
\(\dfrac{3x}{3.4}=\dfrac{2y}{2.2}=\dfrac{4z}{4.3}=\dfrac{3x+2y+4z}{12+4+12}=\dfrac{20}{28}=\dfrac{5}{7}\\ x=\dfrac{5}{7}:4=\dfrac{5}{28}\\ y=\dfrac{5}{7}:2=\dfrac{5}{14}\\ z=\dfrac{5}{7}:3=\dfrac{5}{21}\)
1. Rút gọn biểu thức :
\(M=4.\left(2-3x\right)-\left|2x-3\right|\) (*)
- Xét 2 TH :
+ Trường hợp 1 : \(\left|2x-3\right|=\left(2x-3\right)\) thì (*) trở thành :
\(M=4.\left(2-3x\right)-\left(2x-3\right)\)
\(\Rightarrow M=8-12x-2x+3\)
\(\Rightarrow M=-14x+11\)
+ Trường hợp 2 : \(\left|2x-3\right|=\left(3-2x\right)\) thì (*) trở thành :
\(M=4.\left(2-3x\right)-\left(3-2x\right)\)
\(\Rightarrow M=8-12x-3+2x\)
\(\Rightarrow M=-10x+5\)
3^3+3x=2^3+3x
27+3x=8+3x
19=0(vô lí)
Vậy x thuộc rỗng.
X thuộc rỗng