Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-1/2+1/2-1/3+1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8-1/8+1/9-1/9+1/10-(1-1/3+1/3-3/5+3/5-4/7+5/9-5/9+6/11-6/11-7/13)=1+1/10-1+7/13=83/130
a) 128 - 3(x + 4) = 23
3(x + 4) = 128 -23
3(x + 4) = 105
x + 4 = 105 : 3
x + 4 = 35
x = 35 - 4
x = 31
\(a.128-3\left(x+4\right)=23.\)
\(3\left(x+4\right)=128-23\)
\(3\left(x+4\right)=105\)
\(x+4=105:3=35\)
\(x=35-4=31\)
\(b.\left[\left(4x+28\right)\cdot3+55\right]:5=35\)
\(\left(4x+28\right)\cdot3+55=35\cdot5=175\)
\(\left(4x+28\right)\cdot3=175-55=120\)
\(4x+28=120:3=40\)
\(4x=40-28=12\)
\(x=12:4=3\)
- \(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\)
\(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)
\(4.B=1-\frac{1}{97}\)
\(4.B=\frac{96}{97}\)
\(B=\frac{96}{97}:4\)
\(B=\frac{24}{97}\)
\(\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}+\frac{141}{143}\)
\(=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=6-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=6-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-\frac{12}{13}\)
\(=\frac{66}{13}\)
Ủng hộ mk nha ^_-
3/15+3/35+...+3/399
Đặt S=3/15+3/35+...+3/399
=> S=3/3.5+3/5.7+..+3/19.21
=> S=(3/3.5+3/5.7+...+3/19.21).2
=> S=2.3/3.5+2.3/5.7+...+2.3/19.21
=> S=3.(2/3.5+2/5.7+...+2/19.21)
=> S=3.(1/3-1/5+1/5-1/7+...+1/19-1/21)
=> S=3.(1/3-1/21)
=> S=3.2/7
=> S=6/7
Vậy 3/15+3/35+...+3/399=6/7
\(\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+...+\frac{3}{399}\)
\(=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{399}\)
\(=\frac{3}{2}.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=\frac{3}{2}.\frac{2}{7}\)
\(=\frac{3}{7}\)