K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 6 2019

a/

\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-\frac{5}{2}\right)^2+\frac{27}{2}=0\)

\(VT>0\Rightarrow\) ko tồn tại x; y thỏa mãn

b/

\(\Leftrightarrow4x^2-4x+1+3\left(y^2+10y+25\right)+2=0\)

\(\Leftrightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)

\(\Rightarrow\) Không tồn tại x; y thỏa mãn

c/

\(3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{34}{3}=0\)

\(\Leftrightarrow3\left(x-2\right)+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}=0\)

Không tồn tại x; y thỏa mãn

a: \(x^2+3y^2-4x+6y+7=0\)

\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)

11 tháng 8 2015

bạn c/m cho nó lớn hơn hoặc nhỏ hơn 0 đi mk ngại làm vì hơi nhìu ^.^ sory

25 tháng 8 2016

bài này chỉ có hsg như tui, alibaba nguyễn, hoàng lê bảo ngọc ..... làm dc

1 tháng 10 2016

a) 4x2+3y2-4x+30y+78

=4x2-4x+1+3y2+30y+75+2

=(4x2-4x+1)+3(y2+10y+25)+2

=(2x-1)2+3(y+5)2+2>0 với mọi x

=>ko có x;y nào thỏa mãn

b)3x2+6y2-12x-20y+40

\(=3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}+\frac{25}{9}\right)+\frac{34}{3}\)

\(=3\left(x-2\right)^2+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}>0\) với mọi x

=>ko có x;y nào thỏa mãn

21 tháng 9 2017

con này dễ mà

31 tháng 7 2019

Làm lần lượt nha!

a) Ta có:

\(A=3x^2+y^2+10x-2xy+26\)

\(=\left(x^2+2xy+y^2\right)+\left(2x^2+10x+\frac{50}{4}\right)+\frac{27}{2}\)

\(=\left(x+y\right)^2+2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{27}{2}\)

\(=\left(x+y\right)^2+2\left(x+\frac{5}{2}\right)^2+\frac{27}{2}\ge\frac{27}{2}>0\) với mọi x nên nó vô nghiệm

31 tháng 7 2019

b) \(B=4x^2+y^2+4x+2y+6=\left[\left(2x\right)^2+2.2x.1+1\right]+\left(y^2+2y+1\right)+4\)

\(=\left(2x+1\right)^2+\left(y+1\right)^2+4\ge4\) > 0

Nên nó vô nghiệm

22 tháng 9 2021

\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)

Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)

\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)

\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)

21 tháng 9 2021

xy là x.y hay là x và y vậy bn

21 tháng 9 2021

X và y là số nguyên phải ko

a: \(3x^2+y^2+10x-2xy+26=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{5}{2}\right)+\dfrac{47}{2}=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\cdot\left(x+\dfrac{5}{2}\right)^2+\dfrac{47}{2}=0\)(vô lý)

b: \(\Leftrightarrow3x^2-12x+12+6y^2-20y+\dfrac{50}{3}+\dfrac{34}{3}=0\)

\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\)(vô lý)