Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 canh của tam giác lần lượt là x.y.z(cm;x,y,z thuộc N*)
Vì các canh của tam giác tỉ lệ với 3;4;5 và chu vi là 60 nên:
\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)và x+y+z=60
Áp dụng tính chất của dãy tỉ số bằng nhau
Ta có:\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{5}\)=\(\frac{x+y+z}{3+4+5}\)=\(\frac{60}{12}\)=5
Nên:\(\frac{x}{3}\)=5 suy ra x=15
\(\frac{y}{4}\) =5 suy ra y=20
\(\frac{z}{5}\)=5 suy ra z=25
Vậy độ dài 3 cạnh của tam giác lần lượt là 15cm;20cm;25cm.
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
Gọi độ dài các cạnh của tam giác lần lượt là x, y, z
Theo đề bài ta có: và x + y + z = 36
Theo tính chất của dãy tỉ số bằng nhau ta có:
Chọn đáp án A
gọi độ dài 3 cạnh của tam giác đó lần lượt là x;y;z(x;y;z>0)
ta có :
x/3=y/5=z/7 và x+y+z=150
áp dụng tc dãy ts = nhau ta có :
x/3=y/5=z/7=x+y+z/3+5+7=150/15=10
=>x/3=10=>x=30 cm
=>y/5=10=>y=50 cm
=>z/7=10=>z=70 cm
vậy ...
Gọi độ dài ba cạnh là x;y;z
Theo bài ra ta có : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=150\)
Áp dụng dãy tỉ bằng nhau : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=\frac{150}{15}=10\)
\(\Rightarrow\) \(\frac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\frac{y}{5}=10\Rightarrow x=50\)
\(\Rightarrow\)\(\frac{z}{7}=10\Rightarrow z=70\)
P/s : Sai đừng trách nha - Bởi mình mới lớp 6
Gọi 3 cạnh tam giác lần lượt là : a, b , c
a:b:c=3:4:5 hay
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{48}{12}=4\)
=> a = 4 . 3 = 12
=> b = 4 . 4 = 16
=> c = 5 . 4 = 20
vậy 3 cạnh có số đo lần lượt là : 12 cm , 16 cm , 20 cm
chu vi tam giác là 30x2=60
gọi 3 cạnh lần lượt là a;b;c
ta có a/3=b/4=c/5
=>a+b+c/3+4+5=60/12=5
=>a=5x3=15
b=5x4=20
c=5x5=25
đây nhé
Gọi 3 cạnh tam giác đó là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{12}{12}=1\)
\(\dfrac{a}{3}=1\Rightarrow a=3\\ \dfrac{b}{4}=1\Rightarrow b=4\\ \dfrac{c}{5}=1\Rightarrow c=5\)
Gọi 3 cạnh của tam giác lần lượt là: a, b,c
Ta có:
a,b,c tỉ lệ với 3,4,5
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{12}{12}=1\\ \Rightarrow a=3;b=4;c=5\)
Gọi độ dài ba cạnh của tam giác đó lần lượt là a ; b ; c ( cm, a ; b ; c \(\in\)N*)
Giả sử a < b < c
Vì độ dài 3 cạnh của tam giác đó tỉ lệ với 3 ; 4 ; 5
=> \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tích chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)( Vì chu vi của tam giác đó là 36 và a ; b ; c là độ dài 3 cạnh của tam giác đó)
Khi đó a = 3.3 = 9 cm ; b = 3.4 = 12 cm ; c = 3.5 = 15 cm
Vậy......
Học tốt
#Dương
1. Áp dụng TCDTSBN:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{a+b}{3+5}=\dfrac{32}{8}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a=12\\b=20\end{matrix}\right.\)
1. Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{a+b}{3+5}=\dfrac{32}{8}=4\)
\(\dfrac{a}{3}=4\Rightarrow a=12\\ \dfrac{b}{5}=4\Rightarrow b=20\)
2. gọi độ dài 3 cạnh tam giác lần lượt là a,b,c
Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{9}\\a+b+c=630\left(m\right)\end{matrix}\right.\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{9}=\dfrac{a+b+c}{5+7+9}=\dfrac{630}{21}=30\left(m\right)\)
\(\dfrac{a}{5}=30\Rightarrow a=150\left(m\right)\\ \dfrac{b}{7}=30\Rightarrow b=210\left(m\right)\\ \dfrac{c}{9}=30\Rightarrow c=270\left(m\right)\)
Gọi 3 cạnh của tam giác lần lượt là x,y,z
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tc dãy tỉ
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{35}{15}=\frac{7}{3}\)
\(\begin{cases}\frac{x}{3}=\frac{7}{3}\\\frac{y}{5}=\frac{7}{3}\\\frac{z}{7}=\frac{7}{3}\end{cases}\)\(\Rightarrow\begin{cases}x=7\\y=\frac{35}{3}\\z=\frac{49}{3}\end{cases}\)
Gợi 3 cạnh của tam giác lần lượt là a,b,c
Theo đề bài ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a+b+c=35
Áp dụng tính chất của dãy tỉ ssoos bằng nhau ta cd:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{35}{15}=\frac{7}{3}\)
=>\(\begin{cases}a=7\\b=\frac{35}{3}\\c=\frac{49}{3}\end{cases}\)