K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

\(2x:6=5:3\)                              \(-\frac{2}{x}=-\frac{x}{8}\)

\(\Rightarrow2x:6=\frac{5}{3}\)                          \(\Rightarrow-2\times8=x\times\left(-x\right)\)

\(\Rightarrow2x=\frac{5}{3}\times6\)                      \(\Rightarrow-16=\left(-x\right)^2\)

\(\Rightarrow2x=10\)                               \(\Rightarrow\left(-4\right)^2=\left(-x\right)^2\)

\(\Rightarrow x=5\)                                    \(\Rightarrow x=-4\)

27 tháng 9

         Bài 1:

\(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)

\(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1

-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)

\(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)

  \(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))

 \(x\) = \(\dfrac{3}{14}\)

Vậy \(x=\dfrac{3}{14}\)

 

 

27 tháng 9

Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1

         2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)

         - 5\(x\)    = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\) 

        - 5\(x\)    = \(\dfrac{7}{6}\)

           \(x\)    = \(\dfrac{7}{6}\) : (- 5) 

          \(x\)    = - \(\dfrac{7}{30}\)

Vậy \(x=-\dfrac{7}{30}\)

 

17 tháng 9 2023

a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);        

b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);

c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) =  - 3{x^2}.6{x^2} -  - 3{x^2}.8x +  - 3{x^2}.1\\ =  - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} =  - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);               

d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);

e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ =  - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} =  - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);  

g) 

 \(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

1: Trường hợp 1: x<-2

Pt sẽ là -x-2+5-x=7

=>-2x+3=7

=>-2x=4

hay x=-2(loại)

Trường hợp 2: -2<=x<5

Pt sẽlà x+2+5-x=7

=>7=7(luôn đúng)

Trường hợp 3: x>=5

Pt sẽ là x+2+x-5=7

=>2x-3=7

=>x=5(nhận)

4: \(\left|x^2-2x\right|=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(x^2-2x\right)^2=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-2x-x\right)\left(x^2-2x+x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-3x\right)\left(x^2-x\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;1;3\right\}\)

5: Ta có: \(\left|2x+3\right|=x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(2x+3+x+2\right)\left(2x+3-x-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(3x+5\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};-1\right\}\)

6: |5x-4|=|x+2|

=>5x-4=x+2 hoặc 5x-4=-x-2

=>4x=6 hoặc 6x=2

=>x=3/2 hoặc x=1/3

 

a: Ta có: \(\left|\dfrac{2}{5}-x\right|+\dfrac{1}{2}=3.5\)

\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=3\\x-\dfrac{2}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{5}\\x=-\dfrac{13}{5}\end{matrix}\right.\)

b: Ta có: \(\dfrac{21}{5}+3:\left|\dfrac{x}{4}-\dfrac{2}{3}\right|=6\)

\(\Leftrightarrow3:\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=6-\dfrac{21}{5}=\dfrac{9}{5}\)

\(\Leftrightarrow\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=\dfrac{5}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x-\dfrac{2}{3}=\dfrac{5}{3}\\\dfrac{1}{4}x-\dfrac{2}{3}=-\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x=\dfrac{7}{3}\\\dfrac{1}{4}x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=-4\end{matrix}\right.\)

em muốn hỏi là tại sao 3,5 bên trên xuống dưới lại là 3 và -x +2/5 của em xuống dưới lại chuyển thành x-2/5 ạ mong anh giải đáp

21 tháng 7 2017

\(2x+\frac{1}{2}=\frac{-5}{3}\)

\(2x=\frac{-5}{3}-\frac{1}{2}\)

\(2x=\frac{-10}{6}-\frac{3}{6}\)

\(2x=\frac{-13}{6}\)

\(x=\frac{-13}{6}:2\)

\(x=\frac{-13}{12}\)