K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

ta co | x - 1/3| + | x-y| = 0 (1)

mà |x - 1/3| >= 0 với mọi x , |x-y| >= 0 với mọi x,y => | x - 1/3| + | x-y| >=0 với mọi x,y (2) từ (1) và (2) => | x - 1/3 | = 0 và | x-y| =0

=> x - 1/3 =0 và x-y = 0 => x = 1/3 và x = y => x = y = 1/3

nhớ tích mk nhé 

13 tháng 7 2018

\(|8-2x|=x+6\)

\(\Leftrightarrow\orbr{\begin{cases}2x-8=x+6\left(x< 0\right)\\8-2x=x+6\left(x\ge0\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=14\left(loai\right)\\-3x=-2\Leftrightarrow x=\frac{2}{3}\left(nhan\right)\end{cases}}\)

vay \(x=\frac{2}{3}\)

nếu có sai bn thông cảm nha

13 tháng 7 2018

\(\left|8-2x\right|=x+6\)

\(\Rightarrow8-2x=x+6\)

\(\Leftrightarrow\hept{\begin{cases}2x-8=x+6\left(x\le0\right)\\8-2x=x+6\left(x\ge0\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=14\\x=\frac{2}{3}\end{cases}}\)

Mà theo đúng biểu thức, \(\left|8-2x\right|=x+6\)

\(\Rightarrow x=\frac{2}{3}\)

Vậy x = \(\frac{2}{3}\)

12 tháng 8 2016

Bài 1:

a)|x-2|=x-2

<=>x-2=-(x-2) hoặc (x-2)

  • Với x-2=-(x-2) 

=>x-2=-x+2

=>x=2

  • Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn

b)|2x+3|=5x-1

=>2x+3=-(5x-1) hoặc 5x-1

  • Với 2x+3=-(5x-1)

​=>2x+3=-5x+1

=>x=-2/7 (loại)

  • Với 2x+3=5x-1

​=>x=4/3

Bài 2:

a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)

\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)

\(\Rightarrow A\ge0\)

Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)

Vậy MinA=0 khi x=2; y=-3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:

\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)

\(\Rightarrow B\ge1\)

Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)

Vậy MinB=1 khi x=2016 hoặc 2017

 

 

12 tháng 8 2016

lần sau đăng ít thôi 

8 tháng 11 2016

\(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

\(\left|x+y+z\right|=95\Rightarrow x+y+z=\pm95\)

  • Xét \(x+y+z=95\) ta áp dụng tc dãy tí số bằng nhau:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{95}{31}\)

\(\Rightarrow\begin{cases}\frac{x}{15}=\frac{95}{31}\Rightarrow x=\frac{95\cdot15}{31}=\frac{1425}{31}\\\frac{y}{10}=\frac{95}{31}\Rightarrow y=\frac{95\cdot10}{31}=\frac{950}{31}\\\frac{z}{6}=\frac{95}{31}\Rightarrow z=\frac{95\cdot6}{31}=\frac{570}{31}\end{cases}\)

  • Xét \(x+y+z=-95\) ta áp dụng tc dãy tí số bằng nhau:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-95}{31}\)

\(\Rightarrow\begin{cases}\frac{x}{15}=-\frac{95}{31}\Rightarrow x=\frac{95\cdot15}{31}=-\frac{1425}{31}\\\frac{y}{10}=-\frac{95}{31}\Rightarrow y=\frac{95\cdot10}{31}=-\frac{950}{31}\\\frac{z}{6}=-\frac{95}{31}\Rightarrow z=\frac{95\cdot6}{31}=-\frac{570}{31}\end{cases}\)

 

 

3 tháng 11 2017

Đặt \(A=\left|x-1,5\right|+\left|x-2,5\right|\)

Ta có : \(\left|x-1,5\right|\ge0.Với\forall x\in R\)

\(\left|x-2,5\right|\ge0.Với\forall x\in R\)

\(\Rightarrow A=\left|x-1,5\right|+\left|x-2,5\right|\ge0\)

Dấu " = " xảy ra khi \(\orbr{\begin{cases}\left|x-1,5\right|=0\\\left|x-2,5\right|=0\end{cases}\Rightarrow x=\orbr{\begin{cases}1,5\\2,5\end{cases}}}\). Vậy Min A = 0 khi và chỉ khi \(x=\orbr{\begin{cases}1,5\\2,5\end{cases}}\)