K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2023

\(2x^2\left(x^2+y^2\right)+2y^2\left(x^2+y^2\right)+5\left(y^2+x^2\right)\)

\(=\left(x^2+y^2\right)\left(2x^2+2y^2\right)+5\left(x^2+y^2\right)\)

\(=2\left(x^2+y^2\right)\left(x^2+y^2\right)+5\left(x^2+y^2\right)\)

\(=2\left(x^2+y^2\right)^2+5\left(x^2+y^2\right)\)

Thay \(x^2+y^2=1\) vào ta có:

\(2\cdot1^2+5\cdot1=2+5=7\)

\(A=\left(2x^2+2y^2+5\right)\left(x^2+y^2\right)\)

=2x^2+2y^2+5

=2(x^2+y^2)+5

=2+5

=7

17 tháng 8 2019

A= 2x^2 + y^2 - 2xy -2x+3

A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2

A= (x-y)^2 + (x-1)^2 + 2

(x-y)^2> hoặc = 0 với mọi giá trị của x

(x-1)^2 > hoặc =0 với mọi giá trị của x

=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x

=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2

=> A lớn hơn hoặc bằng 2

=> GTNN của A=2 tại x=y=1

\(C=\left(x^2-2xy+y^2\right)\left(x^2+y^2\right)-2x^3y-3x^3y^2+2xy^3\)

\(=\left(x^2+y^2\right)^2-2xy\left(x^2+y^2\right)-xy\left(2x^2+3x^2y+2y^2\right)\)

\(=\left(x^2+y^2\right)^2-xy\left(2x^2+2y^2+2x^2+3x^2y+2y^2\right)\)

\(=\left(x^2+y^2\right)^2-xy\left(4x^2+3x^2y+4y^2\right)\)

 

 

10 tháng 10 2021

\(a,x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right).\left(x-y+z\right)\)

\(b,x^3+y^3+2x^2-2xy+2y^2=\left(x^3+y^3\right)+2\left(x^2-xy+y^2\right)=\left(x+y\right).\left(x^2-2xy+y^2\right)+2.\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right).\left(x+y+2\right)\)

5 tháng 10 2018

Bạn Hoa giải đúng

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

3 tháng 11 2018

Ta có

M   =   3 x 2 ( x 2   +   y 2 )   +   3 y 2 ( x 2   +   y 2 )   –   5 ( y 2   +   x 2 )     =   ( x 2   +   y 2 ) ( 3 x 2   +   3 y 2   –   5 )     =   ( x 2   +   y 2 ) [ 3 ( x 2   +   y 2 )   –   5 ]

Mà x 2   +   y 2   =   1 nên M = 1.(3.1 – 5) = -2. Vậy M = -2

Đáp án cần chọn là: D