K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2023

2x² + 12x + 18 - 2y²

= 2(x² + 6x + 9 - y²)

= 2[(x² + 6x + 9) - y²]

= 2[(x + 3)² - y²]

= 2(x + 3 - y)(x + 3 + y)

= 2(x - y + 3)(x + y + 3)

6 tháng 12 2019

Phân tích đa thức thành nhân tử:

 \(3x^2-12x^2y^2+3y^2+6xy\)

\(=3\left(x^2-4x^2y^2+y^2+2xy\right)\)

\(=3\left[\left(x^2+2xy+y^2\right)-\left(2xy\right)^2\right]\)

\(=3\left[\left(x+y\right)^2-\left(2xy\right)^2\right]\)

\(=3\left(x+y-2xy\right)\left(x+y+2xy\right)\)

26 tháng 8 2020

Bài làm:

1) Ta có: \(2x^2+5xy+2y^2\)

\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)

\(=2x\left(x+2y\right)+y\left(x+2y\right)\)

\(=\left(2x+y\right)\left(x+2y\right)\)

2) Ta có: \(2x^2+2xy-4y^2\)

\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)

\(=2x\left(x-y\right)+4y\left(x-y\right)\)

\(=2\left(x+2y\right)\left(x-y\right)\)

26 tháng 8 2020

\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)

a) \(x^2-2x-15\)

\(\Leftrightarrow x^2-2x+1-16\)

\(\Leftrightarrow\left(x-1\right)^2-4^2\)

\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\)

1 tháng 11 2018

\(a,x^2-2x-15=\left(x^2-2x+1\right)-16.\)

\(=\left(x-1\right)^2-4^2\)

\(=\left(x-5\right)\left(x+3\right)\)

21 tháng 1 2017

\(x^4+y^2-2x^2y+x^2+2x-2y\)

\(=\left(y^2-x^2y-xy\right)-\left(x^2y-x^4-x^3\right)+\left(xy-x^3-x^2\right)-\left(2y-2x^2-2x\right)\)

\(=y\left(y-x^2-x\right)-x^2\left(y-x^2-x\right)+x\left(y-x^2-x\right)-2\left(y-x^2-x\right)\)

\(=\left(y-x^2+x-2\right)\left(y-x^2-x\right)\)

20 tháng 8 2020

Bài làm:

Ta có: \(a^2x^2+b^2y^2-a^2y^2-b^2x^2\)

\(=a^2\left(x^2-y^2\right)-b^2\left(x^2-y^2\right)\)

\(=\left(a^2-b^2\right)\left(x^2-y^2\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(x-y\right)\left(x+y\right)\)

20 tháng 8 2020

\(a^2x^2+b^2y^2-a^2y^2-b^2x^2\)

\(=\left(a^2x^2-a^2y^2\right)-\left(b^2x^2-b^2y^2\right)\)

\(=a^2\left(x^2-y^2\right)-b^2\left(x^2-y^2\right)\)

\(=\left(a^2-b^2\right)\left(x^2-y^2\right)\)

12 tháng 10 2019

\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)

    \(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)

    \(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)

\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)

    \(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)

    \(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).

a) Ta có: \(4x^2-28xy+49y^2\)

\(=\left(2x\right)^2-2\cdot2x\cdot7y+\left(7y\right)^2\)

\(=\left(2x-7y\right)^2\)

b) Ta có: \(x^2+8xy+16y^2\)

\(=x^2+2\cdot x\cdot4y+\left(4y\right)^2\)

\(=\left(x+4y\right)^2\)

c) Ta có: \(x^2-12x+36\)

\(=x^2-2\cdot x\cdot6+6^2\)

\(=\left(x-6\right)^2\)

17 tháng 7 2021

\(\left(2x-7y\right)^2\)

\(\left(6-x\right)^2\)

9 tháng 8 2017

\(2x^2+4x+2-2y^2=2.\left(x^2+2x+1-y^2\right)\)\(2.\left(\left(x+1\right)^2-y^2\right)=2.\left(x+1+y\right)\left(x+1-y\right)\)

\(_{\left(-2\right)\left(y-x-1\right)\left(y+x+1\right)}\)