Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1B:
a: \(\dfrac{7\cdot5^8-8\cdot5^4+125}{5^2}=\dfrac{7\cdot5^8}{5^2}-\dfrac{8\cdot5^4}{5^2}+\dfrac{125}{25}\)
\(=7\cdot5^6-8\cdot5^2+5\)
\(=7\cdot15625-8\cdot25+5\)
\(=109180\)
b: \(\dfrac{3\cdot4^2+8^2+3\cdot16^2}{2^3}\)
\(=\dfrac{3\cdot2^4+2^6+3\cdot2^8}{2^3}\)
\(=3\cdot2+2^3+3\cdot2^5\)
\(=96+6+8=96+14=110\)
2A:
a: \(\dfrac{2x^3+3x^4-12x^2}{x}=\dfrac{2x^3}{x}+\dfrac{3x^4}{x}-\dfrac{12x^2}{x}=3x^3+2x^2-12x\)
b: \(\dfrac{4x^2y^3-9x^2y^2+25xy^4}{2xy^2}\)
\(=\dfrac{4x^2y^3}{2xy^2}-\dfrac{9x^2y^2}{2xy^2}+\dfrac{25xy^4}{2xy^2}\)
\(=2xy-\dfrac{9}{2}x+\dfrac{25}{2}y^2\)
a,\(x^3-x=0\Rightarrow x\left(x^2-1\right)=0\Rightarrow x\left(x+1\right)\left(x-1\right)=0\)
b,\(x^2-2x+x-2=0\Rightarrow x\left(x-2\right)+\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+1\right)=0\)
c,\(x^2-6x+8=x^2-4x-2x+8=x\left(x-4\right)-2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(x^3-x=0\)
\(\Leftrightarrow x\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
x=0 hoặc x-1=0=> x=1 hoặc x+1=0 => x=-1
\(x^2-2x+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\(x^2-6x+8=0\)
\(\Leftrightarrow x^2-2x-4x+8=0\)
\(\Leftrightarrow x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
a)\(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
b)\(x^{10}+x^5+1\)
\(=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^8\left(x^2+x+1\right)-x^7\left(x^2+x+1\right)+x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
a) \(x^8+x^4+1\)
= \(x^8+2x^4-x^4+1\)
= \(\left(x^4+1\right)^2-x^4\)
= \(\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
= \(\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
= \(\left(x^4-x^2+1\right)\left[\left(x^2+1\right)^2-x^2\right]\)
= \(\left(x^4-x^2+1\right)\left(x^2+1-x^2\right)\left(x^2+1+x^2\right)\)
= \(\left(x^4-x^2+1\right)\left(2x^2+1\right)\)
b) \(x^{10}+x^5+1\)
= ( x10+x9+x8) - (x9+x8+x7) + (x7+x6+x5) - (x6+x5+x4) + (x5+x4+x3) - (x3+x2+x) + (x2+x+1)
= (x2+x+1)(x8 - x7+x5-x4+x3-x+1)
Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!
a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)
<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)
<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\) (1)
TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)
=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
VẬY \(\left(x;y\right)=\left(3;2\right)\)
\(2x^2-x-10=0\Leftrightarrow2x^2-5x+4x-10=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-2\end{matrix}\right.\)
Thank you very much!!!