K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

| 2x - 8 |  - 9 =0

=>|2x-8|=9

=>2x-8=9 hoặc -9

  • Với 2x-8=9 

=>2x=17

=>x=17/2

  • Với 2x-8=-9

=>2x=-1

=>x=-1/2

10 tháng 8 2016

ko cho = bao nhiêu thánh mới biêt lam

22 tháng 9 2016

bl r ma bnhaha

27 tháng 1 2021

a, m2x - 1 < mx + m

⇔ (m2 - m)x < m + 1

Bất phương trình vô nghiệm khi 

\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Vậy phương trình có nghiệm với ∀m ∈ R

b, (m2 + 9)x + 3 ≥ m - 6mx

⇔ (m2 + 6m + 9)x ≥ m + 3

Phương trình có nghiệm đúng với ∀x khi m = -3

c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12

⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12

⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12

Bất phương trình có nghiệm đúng với ∀x khi m = -1

 

 

 

15 tháng 12 2021

2x² - 3x + 2 = (1/8)(16x² - 24x + 9) + 7/8 = (1/8)(4x - 3)² + 7/8 > 0 nên |2x² - 3x + 2| = 2x² - 3x + 2

|2x² - 3x + 2| = 5m - 8x - 2x²

⇔ 2x² - 3x + 2 = 5m - 8x - 2x²

⇔ 4x² + 5x + 2 - 5m = 0

Để PT có nghiệm duy nhất thì đó phải là nhiệm kép :

Δ = 25 - 16(2 - 5m) = 80m - 7 = 0 ⇔ m = 7/80

27 tháng 5 2021

Đáp án của toi:https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.920223129881

Đáp án của một bạn khác: https://hoc24.vn/cau-hoi/tim-tat-ca-cac-gia-tri-cua-tham-so-m-de-bat-phuong-trinh-sau-co-nosqrt2xsqrt4-x-sqrt82x-x2le-m.616555176629

27 tháng 5 2021

2 đáp án khác nhau phải làm sao ạ :((

11 tháng 4 2021

ĐK: \(-2\le x\le4\)

Đặt \(\sqrt{2+x}+\sqrt{4-x}=t\left(\sqrt{6}\le t\le2\sqrt{3}\right)\)

\(\Rightarrow\sqrt{8+2x-x^2}=\dfrac{t^2-6}{2}\)

Bất phương trình tương đương:

\(t+\dfrac{t^2-6}{2}\le m\)

\(\Leftrightarrow f\left(t\right)=t^2+2t-6\le2m\)

Bất phương trình đã cho có nghiệm khi \(2m\ge minf\left(t\right)=f\left(\sqrt{6}\right)=2\sqrt{6}\)

\(\Leftrightarrow m\ge\sqrt{6}\)

Kết luận: \(m\ge\sqrt{6}\)

20 tháng 5 2021

Đặt \(t=\sqrt{2+x}+\sqrt{4-x}\)  (\(t\in\left[\sqrt{6};2\sqrt{3}\right]\) )      

\(\Leftrightarrow t^2=6+2\sqrt{8+2x-x^2}\)

\(\Leftrightarrow\dfrac{t^2-6}{2}=\sqrt{8+2x-x^2}\)

Khi đó ta cần tìm m để bpt \(t-\dfrac{t^2-6}{2}\le m\) có nghiệm \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

\(\Leftrightarrow-t^2+2t+6-2m\le0\) có nghiệm  \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

Đặt \(f\left(t\right)=-t^2+2t+6-2m\) , \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

BBT 

t-∞√62√31-∞f(t)f(1)2√6-2m-6+4√3-2m

TH1: \(maxf\left(t\right)\le0\) \(\Leftrightarrow f\left(1\right)\le0\) \(\Leftrightarrow7-2m\le0\) \(\Leftrightarrow m\ge\dfrac{7}{2}\)       (I)

TH2: \(maxf\left(t\right)>0\Leftrightarrow7-2m>0\Leftrightarrow m< \dfrac{7}{2}\)

Để \(f\left(t\right)\le0\) có nghiệm \(t\in\left[\sqrt{6};2\sqrt{3}\right]\)

 \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{6}-2m\le0\\2\sqrt{6}-2m>0\ge-6+4\sqrt{3}-2m\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{6}\\\sqrt{6}>m\ge-3+2\sqrt{3}\end{matrix}\right.\)

Kết hợp với đk ta có:\(\left[{}\begin{matrix}\dfrac{7}{2}>m\ge\sqrt{6}\\\sqrt{6}>m\ge-3+2\sqrt{3}\end{matrix}\right.\)           (II)

Từ (I) (II) ta có: \(m\in\left[-3+2\sqrt{3};+\infty\right]\)