Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) | 2x - 1 | = 1- 3x
\(\orbr{\begin{cases}2x-1=1-3x\\2x-1=-\left(1-3x\right)\end{cases}}\)
\(\orbr{\begin{cases}2x-3x=1+1\\2x-1=-1+3x\end{cases}}\)
\(\orbr{\begin{cases}-x=2\\2x+3x=-1+1\end{cases}}\)
\(\orbr{\begin{cases}x=-2\\5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}\)
b) | 1 - 2x | = x + 1
\(\orbr{\begin{cases}1-2x=x+1\\1-2x=-\left(x+1\right)\end{cases}}\)
\(\orbr{\begin{cases}-2x-x=1-1\\-2x+x=-1-1\end{cases}}\)
\(\orbr{\begin{cases}-3x=0\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
tương tự
câu 1 : tìm a biết
a + b _c = 18 với b = 10 ; c = - 9
\(\Rightarrow a+10+9=18\)
\(a=18-19=-1\)
2a _ 3b + c = 0 với b = -2 ; c= - 4
\(2a+6-4=0\)
\(2a+2=0\)
\(2a=-2\)
\(a=-1\)
3a _ b _ 2c = 2 với b = 6 ; c = - 1
\(3a-6+2=2\)
\(3a-8=2\)
\(3a=10\)
\(a=\frac{10}{3}\)
12 _ a + b + 5c = - 1 với b = - 7 ; c = 5
\(12-a-7+25=-1\)
\(12-a-7=-26\)
\(12-a=-19\)
\(a=31\)
1 _ 2b + c _ 3a = -9 với b = -3 ; c = 7
\(1+6+7-3a=-9\)
\(14-3a=9\)
\(3a=5\)
\(a=\frac{5}{3}\)
a) \(12\left(x-5\right)=7x-5\)
\(12x-60=7x-5\)
\(12x-7x=60-5\)
\(5x=55\)
\(x=11\)
a, 12(x-5)=7x-5
suy ra 12x-60-7x+5=0
suy ra 5x-55=0
suy ra x=55/5=11
vay x=11
b, ta có 5+2!3x-1/2!=6
suy ra 2!3x-1/2!=6-5=1
suy ra !3x-1/2!=1/2
xet th1: 3x-1/2=1/2
suy ra x=1/3
xet th2 3x-1/2=-1/2
suy ra x=0
vạy x=0 hoac x=1/3
c, (2x-3)^2010=(2x-3)^2012
xet th1 2x-3=1 suy ra x=2
xet th2 2x-*3=0 suy ra x=3/2
vạy x=2 hoac x=3/2
Ko cần đâu bn à mk mong bn đấy
a)\(\left(3x-1\right)\left(5-\frac{1}{2}x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)
b)\(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)
\(2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}\)
\(\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{8}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{29}{12}\\x=-\frac{13}{12}\end{cases}}\)
a)\(\left(3x-1\right)\left(\frac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow\)3x - 1 = 0 hay \(\frac{-1}{2}\)x + 5 = 0
\(\Leftrightarrow\)3x = 1 I\(\Leftrightarrow\)\(\frac{-1}{2}\)x = -5
\(\Leftrightarrow\) x = \(\frac{1}{3}\) I\(\Leftrightarrow\) x = 10
b) 2 I \(\frac{1}{2}x-\frac{1}{3}\)I - \(\frac{3}{2}\)=\(\frac{1}{4}\)
\(\Leftrightarrow\) 2 I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{4}\)
\(\Leftrightarrow\) I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x-\frac{1}{3}\)= \(\frac{7}{8}\) hay \(\frac{1}{2}x-\frac{1}{3}\)= \(\frac{-7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x\) = \(\frac{29}{24}\) I\(\Leftrightarrow\)\(\frac{1}{2}x\) = \(\frac{-13}{24}\)
\(\Leftrightarrow\) x = \(\frac{29}{12}\) I\(\Leftrightarrow\) x = \(\frac{-13}{12}\)
c) (2x +\(\frac{3}{5}\))2 - \(\frac{9}{25}\)= 0
\(\Leftrightarrow\)(2x +\(\frac{3}{5}\))2 = \(\frac{9}{25}\)
\(\Leftrightarrow\) 2x +\(\frac{3}{5}\) = \(\frac{3}{5}\) hay 2x +\(\frac{3}{5}\)= \(\frac{-3}{5}\)
\(\Leftrightarrow\) 2x = 0 I \(\Leftrightarrow\)2x = \(\frac{-6}{5}\)
\(\Leftrightarrow\) x = 0 I \(\Leftrightarrow\) x = \(\frac{-3}{5}\)
d) 3(x -\(\frac{1}{2}\)) - 5(x +\(\frac{3}{5}\)) = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)3x - \(\frac{3}{2}\)- 5x - 3 = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)-2x + x - \(\frac{9}{2}\)- \(\frac{1}{5}\)= 0
\(\Leftrightarrow\)-x = \(\frac{-47}{10}\)
\(\Leftrightarrow\) x = \(\frac{47}{10}\)
\(\left(2x-3\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\6-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}}\)
Vậy ...
\(2.\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)
\(\Leftrightarrow2.\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{8}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=\frac{-7}{8}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{29}{12}\\x=\frac{-13}{12}\end{cases}}\)
Vậy..