Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-3\right)^2-3\left(x-2\right)\left(1-x\right)=\left(2+3x\right)^2-4\left(2-3x\right)\)
\(\Rightarrow4x^2-12x+9-3\left(-x^2+3x-2\right)=4+12x+9x^2-\left(8-12x\right)\)
\(\Rightarrow4x^2-12x+9+3x^2-9x+6-4-12x-9x^2+8-12x=0\)
\(\Rightarrow-2x^2-45x+19=0\)
Có: \(\Delta=\left(-45\right)^2-4.\left(-2\right).19=2177\)
\(\Rightarrow\sqrt{\Delta}=\sqrt{2177}\)
\(\Rightarrow x=-\frac{45+\sqrt{2177}}{4}\) (nhận) hoặc \(x=-\frac{45-\sqrt{2177}}{4}\) (nhận)
1.
\(\text{ĐK: }x\ge\frac{1}{2}\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x-\sqrt{2x-1}\right)+\)\(\left(x-\sqrt[3]{2x^2-x}\right)=0\)
\(\Leftrightarrow\left(x^2+1\right).\frac{x^2-\left(2x-1\right)}{x+\sqrt{2x-1}}+\frac{x^3-\left(2x^2-x\right)}{x^2+Ax+A^2}=0\text{ }\left(A=\sqrt[3]{2x^2-x}\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{x^2+1}{x+\sqrt{2x-1}}+\frac{2x}{x^2+A^2+\left(x+A\right)^2}\right]=0\)
\(\Leftrightarrow x=1\text{ }\left(do\text{ }....................................................>0\right)\)
1)\(x^2-3x+1+\sqrt{2x-1}=0\)
ĐK:\(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)
2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )
\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)
\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)
\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)
\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)
Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)
\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)
\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)
bn đặt tính chia đa thức, tìm ra số dư rồi cho số dư = 0 là tìm được m
[(2x)2-2.2x.3+32]-2(x2-2x+x-2)=[(3x)2+2.3x.1+12]+2(1-2x)
<=>4x2-12x+9-(2x2-4x+2x-4)=9x2+6x+1+2-4x
<=>4x2-2x2-9x2-12x+4x-2x-6x+4x+9+4-1-2=0
<=>-7x2-12+10=0
đen ta = (-12)2-4(-7)10=424
phương trình có 2 ngiệm phân biệt
x1=
x2=