Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(4a^2-15ab+3b^2=0\)
\(4a^2+3b^2=15ab\)
Ta lại có:
\(T=\frac{5a-b}{4a-b}+\frac{3b-2a}{4a+b}\)
\(T=\frac{\left(4a+b\right)\left(5a-b\right)+\left(4a-b\right)\left(3b-a\right)}{16a^2-b^2}\)
\(T=\frac{12a^2+15ab-4b^2}{16a^2-b^2}\)
\(T=\frac{12a^2+4a^2+3b^2-4b^2}{16a^2-b^2}\)
\(T=\frac{16a^2-b^2}{16a^2-b^2}\)
\(T=1\)
a)-4a^3b.2a^3b^2-4a^3b(-3ab^4)
-8a^6b^3+12a^4b^3
b)2x.x^2-2x.3x+2x.4-3.x^2-3.(-3x)-3.4
2x^3-6x^2+8x-3x^2+9x-12
2x^3-9x^2+17x-12
\(\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(1+\frac{4a^2+b^2}{4a^2-b^2}\right)\left(ĐK:2a\ne\pm b\right)\)
\(=\left(\frac{1}{2a-b}-\frac{3b}{\left(2b-b\right)\left(2a+b\right)}-\frac{2}{2a+b}\right):\frac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)
\(=\frac{2a+b-3b-2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\cdot\frac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)
\(=\frac{2a+b-3b-4a+2b}{8a^2}=\frac{-2a}{8a^2}=-\frac{1}{4a}\)
\(P=\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(\frac{4a^2+b}{4a^2-b}+1\right)\)
\(=\left[\frac{2a+b}{\left(2a-b\right)\left(2a+b\right)}-\frac{3b}{\left(2a+b\right)\left(2a-b\right)}-\frac{2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right]:\frac{4a^2+b+4a^2-b}{4a^2-b}\)
\(=\frac{2a+b-3b-4a+2b}{4a^2-b}\cdot\frac{4a^2-b}{8a^2}\)
\(=\frac{-2a}{8a^2}\)
\(a< 0\Rightarrow-2a>0\Rightarrow\frac{-2a}{8a^2}>0\left(8a^2\ge0\right)\)
=> ĐFCM
\(\left(2a-3b\right)\left(4a-b\right)-\left(a^2-b^2\right)-\left(3b-2a\right)^2\)
\(=\left(2a-3b\right)\left(4a-b\right)-\left(2a-3b\right)^2-\left(a^2-b^2\right)\)
\(=\left(2a-3b\right)\left(4a-b-2a+3b\right)-\left(a^2-b^2\right)\)
\(=\left(2a-3b\right)\left(7a-3b\right)-\left(a^2-b^2\right)\)
\(\Leftrightarrow14a^2-21ab-6ab+9b^2-a^2+b^2\)
\(=13a^2-27ab+10b^2\)