K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1: (D): \(y=\left(m-2\right)x+1\)
(D'): \(y=m^2x-2x+m=x\left(m^2-2\right)+m\)
Để (D)//(D') thì \(\left\{{}\begin{matrix}m^2-2=m-2\\m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m=0\\m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m< >1\end{matrix}\right.\Leftrightarrow m=0\)
2:
a: Khi m=0 thì (D): \(y=\left(0-2\right)x+1=-2x+1\)
(D'): \(y=x\left(0^2-2\right)+0=-2x\)
b: Gọi \(\alpha\) là góc tạo bởi (D) với trục Ox
(D): y=-2x+1
=>a=-2
\(tan\alpha=a=-2\)
=>\(\alpha\simeq116^034'\)
c: (D): y=-2x+1; (D'): y=-2x
Gọi A,B lần lượt là giao điểm của (D) với trục Ox và Oy
Ox\(\perp\)Oy nên OA\(\perp\)OB
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\-2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-2x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0,5\\y=0\end{matrix}\right.\)
Vậy: A(0,5;0)
\(OA=\sqrt{\left(0,5-0\right)^2+\left(0-0\right)^2}=0,5\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1=-2\cdot0+1=1\end{matrix}\right.\)
vậy:B(0;1)
\(OB=\sqrt{\left(0-0\right)^2+\left(1-0\right)^2}=1\)
ΔOAB vuông tại O
=>\(OA^2+OB^2=AB^2\)
=>\(AB^2=1^2+0,5^2=1,25\)
=>\(AB=\sqrt{1,25}=\dfrac{\sqrt{5}}{2}\)
Chu vi tam giác OAB là: \(C_{OAB}=OA+OB+AB=1,5+\dfrac{\sqrt{5}}{2}=\dfrac{3+\sqrt{5}}{2}\)
Diện tích tam giác OAB là:
\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot1\cdot0,5=0,25\)
d: (D): y=-2x+1
=>2x+y-1=0
Khoảng cách từ O đến (D) là:
\(d\left(O;\left(D\right)\right)=\dfrac{\left|0\cdot2+0\cdot1-1\right|}{\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{5}}\)
4: (D): y=(m-2)x+1
=mx-2x+1
Tọa độ điểm cố định mà (D) luôn đi qua là:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1=1\end{matrix}\right.\)