Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=2/1x3+14/3x5+...............................................+9899/
Câu 2
a) ta có: \(\overline{abc}=a.100+b.10+c=\left(98a+7b\right)+\left(2a+3b+c\right)=7\left(14a+b\right)+\left(2a+3b+c\right)⋮7\)Vì \(7\left(14a+b\right)⋮7\)
\(\Rightarrow2a+3b+c⋮7\)
b) ta có \(2x+3y⋮17\)
\(\Rightarrow2x+3y+17\left(2x+y\right)⋮17\)
\(\Rightarrow\left(2x+34x\right)+\left(3y+17y\right)⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow4\left(9x+5y\right)⋮17\)
Mà \(\left(4,17\right)=1\)
\(\Rightarrow9x+5y⋮17\)
Bài toán đã được chứng minh
D=\(1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+........+1-\frac{1}{9900}\)
\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)
\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)\)
\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)=98+\frac{1}{100}=\frac{9801}{100}\)
d=1/1.2+5/2.3+11/3.4+...+9899/99.100
=>d=1-1/2+1/2-1/3+...+1/99-1/100
=>d=1-1/100
=>d=99/100
Vậy d=99/100
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+....+\frac{9899}{9900}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+.....+\left(1-\frac{1}{9900}\right)\)
\(=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{99.100}\right)\)
\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)=99-1+\frac{1}{100}=98+\frac{1}{100}=\frac{9801}{100}\)