Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(-5\right)+11+\left(-15\right)+21+\left(-25\right)+31+...+\left(-95\right)+101\\ =\left[\left(-5\right)+11\right]+\left[\left(-15\right)+21\right]+\left[\left(-25\right)+31\right]+...+\left[\left(-95\right)+101\right]\\ =6+6+6+...+6\left(10\text{ số }6\right)\\ =6\cdot10\\ =60\)
\(b,3+\left(-12\right)+13+\left(-22\right)+23+\left(-32\right)+...+93+\left(-102\right)\\ =\left[3+\left(-12\right)\right]+\left[13+\left(-22\right)\right]+\left[23+\left(-32\right)\right]+...+\left[93+\left(-102\right)\right]\\ =\left(-9\right)+\left(-9\right)+\left(-9\right)+...+\left(-9\right)\left(10\text{ số }-9\right)\\ =\left(-9\right)\cdot10\\ =-90\)
\(a,\left(-5\right)+11+\left(-15\right)+21+\left(-25\right)+31+...+\left(-95\right)+101\)
\(=\left[\left(-5\right)+11\right]+\left[\left(-15\right)+21\right]+\left[\left(-25\right)+31\right]+...+\left[\left(-95\right)+101\right]\)
\(=6+6+6+...+6\) (10 số 6)
\(=6.10=60\)
\(\)
a: \(20-\left[30-\left(5-1\right)^2\right]\)
\(=20-\left[30-4^2\right]\)
\(=20-14=6\)
b: \(71+\dfrac{50}{5+3\left(57-6\cdot7\right)}\)
\(=71+\dfrac{50}{5+3\cdot\left(57-42\right)}\)
\(=71+\dfrac{50}{5+3\cdot15}=71+\dfrac{50}{50}=72\)
c: \(4\cdot\left\{270:\left[50-\left(2^5+45:5\right)\right]\right\}\)
\(=4\cdot\left\{270:\left[50-32-9\right]\right\}\)
\(=4\cdot\left\{\dfrac{270}{50-41}\right\}=4\cdot\dfrac{270}{9}=4\cdot30=120\)
d: \(411-\left[\dfrac{\left(107+3\right)}{5}-2^2\right]\)
\(=411-\left[\dfrac{110}{5}-4\right]\)
=410-22+4
=410-18
=392
e: \(450-5\left[3^2\left(7^5:7^3-41\right)-12\right]+18\)
\(=450-5\left[9\cdot\left(7^2-41\right)-12\right]+18\)
\(=450-5\cdot\left[9\cdot8-12\right]+18\)
=468-5*60
=468-300
=168
f:
\(102-150:\left[18-2\cdot\left(10-8\right)^2\right]+1018^0\)
\(=102-150:\left[18-2\cdot4\right]+1\)
\(=103-\dfrac{150}{18-8}=103-15=88\)
Lời giải:
\(B=(1.2)^2+(2.2)^2+(3.2)^2+...+(10.2)^2\)
\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2=2^2(1^2+2^2+...+10^2)\)
\(=4A=4.385=1540\)
\(A=1^2+2^2+3^2+....+10^2\\ A=1^{ }+\left(1+1\right)\cdot2+3\cdot\left(2+1\right)+.....+10\cdot\left(9+1\right)\\ A=1+2\cdot1+2+3\cdot2+3+....+10\cdot9+10\\ A=\left(1+2+3...+10\right)+\left(1\cdot2+3\cdot2+.....+10\cdot9\right)\)
Gọi 1+2+3+...+10 là P
Số số hạng là: (10 - 1) : 1 +1 = 10 (số)
P = (10+1) . 10 : 2 = 55
P = 55
Gọi \(1\cdot2+2\cdot3+....+9\cdot10\) là C
\(C=1\cdot2+2\cdot3+....+9\cdot10\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+....+9\cdot10\cdot3\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+....+9\cdot10\cdot\left(11-8\right)\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+.....+9\cdot10\cdot11-8\cdot9\cdot10\\ 3\cdot C=9\cdot10\cdot11\\ 3\cdot C=990\\ C=330\)
\(=>A=P+C\\ =>A=55+330\\ A=385\)
b)
\(B=5^2+10^2+15^2+...+50^2\\ B=5^2+\left(2\cdot5\right)^2+\left(3\cdot5\right)^2+....+\left(5\cdot10\right)^2\\ B=5^2+2^2\cdot5^2+3^2\cdot5^2+...+5^2\cdot10^2\\ B=5^2\cdot\left(1+2^2+3^2+....+10^2\right)\\ B=25\cdot\left(1+2^2+3^2+....+10^2\right)\)
\(\left(1+2^2+3^2+....+10^2\right)=A\)
\(=>B=25\cdot A\\ B=25\cdot385\\ B=9625\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\)
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(.....\)
\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)
\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)
\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}< 1\)
\(\Rightarrow B< 1\left(dpcm\right)\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\)
\(B< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{9\times10}\)
\(B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B< 1-\dfrac{1}{10}\)
\(B< \dfrac{9}{10}< 1\)
Vậy \(B< 1\)
Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
......
\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)
hay \(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}=\dfrac{9}{10}< 1\) ( đpcm )
Ta có \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\)<\(\dfrac{1}{2.3}\)
\(\dfrac{1}{4.4}\)<\(\dfrac{1}{3.4}\)
.........................
\(\dfrac{1}{10.10}\)<\(\dfrac{1}{9.10}\)
=>\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
=> D < 1 - \(\dfrac{1}{10}\)
=>D < \(\dfrac{9}{10}\)
=> D < \(\dfrac{10}{10}\)
Vậy D < 1
22 + (x - 3) = 52
4 + (x - 3) = 25
x - 3 = 25 - 4
x - 3 = 21
x = 21 + 3
x = 24
22 + ( x - 3 ) = 52
<=> 4 + ( x - 3 ) = 25
<=> x - 3 = 21
<=> x = 24
9x - 2 . 32 = 34
<=>9x - 2 = 34 : 32
<=>9x - 2 = 9
<=>9x = 11
<=> x = 11/9
10x + 22 . 5 = 102
<=> 10x + 4 . 5 = 100
<=> 10x + 4 = 20
<=> 10x = 16
<=> x = 1,6