Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1a.2\sqrt{25xy}+\sqrt{225x^3y^3}-3y\sqrt{16x^3y}=10\sqrt{xy}+15xy\sqrt{xy}-12xy\sqrt{xy}=10\sqrt{xy}+3xy\sqrt{xy}=\sqrt{xy}\left(10+3xy\right)\left(x,y\ge0\right)\)
\(b.-\sqrt{36b}-\dfrac{1}{3}\sqrt{54b}+\dfrac{1}{5}\sqrt{150b}=-6\sqrt{b}-\sqrt{6b}+\sqrt{6b}=-6\sqrt{b}\left(b\ge0\right)\)
\(2.\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}-\sqrt{3x}-3\sqrt{1-2x}=0\)
\(\Leftrightarrow\sqrt{1-2x}=4\sqrt{3x}\left(x\ge\dfrac{1}{2}\right)\)
\(\Leftrightarrow1-2x=48x\)
\(\Leftrightarrow x=\dfrac{1}{50}\left(KTM\right)\)
KL....
a)\(y^4+4(2x-3)y^2-48x-48y+155=0\)
\(\Leftrightarrow y^4+8y^2x+16(9-3y)-12(y^2+4x)+11=0\)
\(\Leftrightarrow(y^2+4x)^2-12(y^2+4x)+11=0\)
<=>....
b)\(y^2-5x^2-4xy+16x-8y+16=0\)
\(\Leftrightarrow-\left(5x-y+4\right)\left(x+y-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=4-x\\y=5x+4\end{cases}}\)
tới đây nhìn vào pt thứ 1 là thấy 1 sự dễ ko hề nhẹ
c)\(pt\left(1\right)\Leftrightarrow2x\left(x+y\right)+2y^2=8x-2\)
cộng theo vế pt(1) vừa tương đương vs pt 2
\(\Leftrightarrow x\left(\left(x+y\right)^2+2\left(x+y\right)-15\right)=0\)
....
Hướng dẫn thui nhé sắp bão to nên phải off r` ko lm dc tiếp thì ib :333
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
a) \(\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
b) \(\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{\left(x^2y^4\right)^2}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{20x^3y^3}{2x^2y^4}\)
\(=\dfrac{10x}{y}\)
c) \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)
\(=ab^2\dfrac{\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
\(a,\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\left(y\ge0;x,y\ne0\right)\) (sửa đề)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
\(---\)
\(b,\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\left(x,y\ne0\right)\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{x^4y^8}}\)
\(=\dfrac{5x^3y^3}{2}\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{5x\cdot2}{y}\)
\(=\dfrac{10x}{y}\)
\(---\)
\(c,ab^2\sqrt{\dfrac{3}{a^2b^4}}\left(a>0;b\ne0\right)\) (sửa đề)
\(=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}\)
\(=\dfrac{ab^2\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=\dfrac{ab^2\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
#\(Toru\)
Đặt pt tên là (1), pt dưới là(2).
-Có với x>y => VT(1)>VP(1) (vô lí)
Tương tự với x<y => VT(1)<VP(1) (vô lí)
=> x=y
(2) <=> \(\sqrt{x+4}+\sqrt{30-x}=\left(x-8\right)^2+18\) (*)
-Có: \(\sqrt{x+4}+\sqrt{30-x}=\sqrt{\left(x+4\right).1}+\sqrt{\left(30-x\right).1}\le18\)
mà VT\(\ge\)18 =>VT=VP=18 <=> x=8 thử lại:........
Đặt pt tên là (1), pt dưới là(2).
-Có với x>y => VT(1)>VP(1) (vô lí)
Tương tự với x<y => VT(1)<VP(1) (vô lí)
=> x=y
(2) <=> √x+4+√30−x=(x−8)2+18x+4+30−x=(x−8)2+18 (*)
-Có: √x+4+√30−x=√(x+4).1+√(30−x).1≤18x+4+30−x=(x+4).1+(30−x).1≤18
mà VT≥≥18 =>VT=VP=18 <=> x=8