K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2022

tui ko biết tui lớp 4

27 tháng 12 2017

A = 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015

2014A = 2014^1 + 2014^2 + 2014^3 + 2014^4 + ... 2014^2015 + 2014^2016 

2014A - A = ( 2014^1 + 2014^2 + 2014^3 + 2014^4 + .... + 2014^2015 + 2014^2016 ) - ( 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015 ) 

2013A = 2014^2016 - 1 

A = 2014^2016 - 1 / 2013

B = 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 ( đề hơi vui )

3B = 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 

3B - B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - ( 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 )

2B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - 3 + 3^2 - 3^3 - 3^4 - ... - 3^100 

2B = 3^2 - 3^3 + 3^101 - 3 + 3^2 - 3^3 

2B = 9 - 27 + 3^101 - 3 + 9 - 27

2B = -18 + 3^101 - 3 + ( -18 )

2B = -39 + 3^101

B = -39 + 3^101 / 2 

27 tháng 12 2017

A = 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015

2014A = 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016

2014A - A = ( 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016 ) - ( 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015 )

2013A = 20142016 - 1

\(=\frac{2014^{2016}-1}{2013}\)

27 tháng 1 2019

\(S=\left(-2\right)^0+\left(-2\right)^1+\left(-2\right)^2+\left(-2\right)^3+....+\left(-2\right)^{2014}+\left(-2\right)^{2015}\)

\(\left(-2\right)S=\left(-2\right)+\left(-2\right)^2+\left(-2\right)^3+\left(-2\right)^4+....+\left(-2\right)^{2016}\)

\(\left(-2\right)S-S=\left[\left(-2\right)+\left(-2\right)^2+...+\left(-2\right)^{2016}\right]-\left[1+\left(-2\right)^1+...+\left(-2\right)^{2015}\right]\)

\(S=\left(-2\right)^{2016}-1\)

25 tháng 10 2018

\(2^0+2^1+2^2+2^3+...+2^{2014}.\)

\(=1+\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+.....+\left(2^{2012}+2^{2013}+2^{2014}\right)\)

\(=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2012}\left(1+2+2^2\right)\)

\(=1+2.7+2^4.7+.....+2^{2012}.7\)

\(=1+7\left(2+2^4+....+2^{2012}\right)\)

\(7\left(2+2^4+...+2^{2012}\right)⋮7\)\(\Rightarrow\)\(2^0+2^1+2^2+2^3+...+2^{2014}\)\(chia7\)\(dư1\)

8 tháng 5 2016

A = 2014 (\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+3+....+2013}\))

A = 2014(1+1/3 + 1/6 +....+ 1/1007.2013)

A = 2014( 2/2 + 2/6 + 2/12 +.....+ 2/2013.2014)

A = 2.2014( 1/2 + 1/6 +....+ 1/2013.2014)

A = 2.2014( 1/1.2 + 1/2.3 +.....+ 1/2013.2014)

A = 2.2014( 1 - 1/2 + 1/2 - 1/3 +.....+ 1/2013 - 1/2014)

A = 2.2014( 1 - 1/2014)

A = 2.2014 . 2013/2014

A = 2.2014.2013/2014 

A = 4026

8 tháng 5 2016

Câu hỏi của h - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

27 tháng 1 2016

kho..............wa...................troi................thi......................ret.....................ai..............tich...............ung.....................ho....................minh..................voi................ret............wa