\(2018^{13}-2018^{12}.......2018^{11}2018^{10}\)

so sánh và giải thích

giúp v...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

\(2018^{13}-2018^{12}=2018^{12}\left(2018-1\right)=2018^{12}.2017\)

\(2018^{11}.2018^{10}=2018^{12}.2018^9\)

Nhận thấy:  \(2017< 2018^9\)=>   \(2018^{12}.2017< 2018^{12}.2018^9\)

hay  \(2018^{13}-2018^{12}< 2018^{11}.2018^{10}\)

7 tháng 1 2019

Mik đang nghĩ là vậy chứ chắc giải thik ko đúng đâu...

\(2018^{13}-2018^{12}< 2018^{11}2018^{10}\)

Vì : Phép tính \(2018^{13}-2018^{12}\) đã trừ đi thì chỉ còn một số nhỏ hơn phép tính \(2018^{11}2018^{10}\)

Mik nghĩ thôi nhé, chắc ko đúng đâu

k cho mik nhé bn

8 tháng 6 2018

Đặt : \(A=\frac{2018^{13}+1}{2018^{14}+1}\)\(B=\frac{2018^{2012}+1}{2018^{2013}+1}\)

Ta có : 

\(2018A=\frac{2018.\left(2018^{13}+1\right)}{2018^{14}+1}\)

\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}=\frac{2018^{14}+1+2017}{2018^{14}+1}=\frac{2018^{2014}+1}{2018^{14}+1}+\frac{2017}{2018^{14}+1}=1+\frac{2017}{2018^{14}+1}\)

\(2018B=\frac{2018.\left(2018^{12}+1\right)}{2018^{13}+1}\)

\(2018B=\frac{2018^{13}+2018}{2018^{13}+1}=\frac{2018^{13}+1+2017}{2018^{13}+1}=\frac{2018^{13}+1}{2018^{13}+1}+\frac{2017}{2018^{13}+1}=1+\frac{2017}{2018^{13}+1}\)

Vì 201814 + 1 >  201813 + 1 nên \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)

\(\Rightarrow1+\frac{2017}{2018^{14}+1}< 1+\frac{2017}{2018^{13}+1}\)Hay : A < B 

Vậy A < B 

8 tháng 6 2018

Đặt \(A=\frac{2018^{13}+1}{2018^{14}+1}\)và \(B=\frac{2018^{12}+1}{2018^{13}+1}\)

Ta có : 

\(2018A=\frac{\left(2018^{13}+1\right)\times2018}{2018^{14}+1}\)                                                         \(2018B=\frac{\left(2018^{12}+1\right)\times2018}{2018^{13}+1}\)

\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}\)                                                                      \(2018B=\frac{2018^{13}+2018}{2018^{13}+1}\)

\(2018A=\frac{2018^{14}+1+2017}{2018^{14}+1}\)                                                                \(2018B=\frac{2018^{13}+1+2017}{2018^{13}+1}\)

\(2018A=1+\frac{2017}{2018^{14}+1}\)                                                                        \(2018B=1+\frac{2017}{2018^{13}+1}\)

Vì \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)

\(\Rightarrow2018A< 2018B\)

\(\Rightarrow A< B\)

Vậy : \(\frac{2018^{13}+1}{2018^{14}+1}< \frac{2018^{12}+1}{2018^{13}+1}\)

26 tháng 3 2019

\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)

\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)

\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)

\(=1+\frac{18162}{10^{2017}+2018}\)

\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)

\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)

\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)

\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)

\(=1+\frac{18162}{10^{2018}+2018}\)

Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)

=> 10A > 10B

=> A > B

24 tháng 6 2019

\(M=\frac{10^{2018}+2}{10^{2018}+1}=\frac{10^{2018}+1+1}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{1}{10^{2018}+1}=1+\frac{1}{10^{2018}+1}\)

\(N=\frac{10^{2018}}{10^{2018}-3}=\frac{10^{2018}-3+3}{10^{2018}-3}=\frac{10^{2018}-3}{10^{2018}-3}+\frac{3}{10^{2018}-3}=1+\frac{3}{10^{2018}-3}\)

Ta có: \(\frac{1}{10^{2018}+1}< \frac{1}{10^{2018}-3}< \frac{3}{10^{2018}-3}\)

\(\Rightarrow N>M\)

25 tháng 6 2019

\(M=\frac{10^{2018}+2}{10^{2018}+1}=\frac{10^{2018}+1+1}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{1}{10^{2018}+1}=1+\frac{1}{10^{2018}+1}.\)

\(N=\frac{10^{2018}}{10^{2018}-3}=\frac{10^{2018}-3+3}{10^{2018}-3}=\frac{10^{2018}-3}{10^{2018}-3}+\frac{3}{10^{2018}-3}=1+\frac{3}{10^{2018}-3}\)

Ta có\(\frac{1}{10^{2018}+1}< \frac{1}{10^{2018}-3}< \frac{3}{10^{2018}-3}\)

\(\Leftrightarrow N>M\)

9 tháng 5 2018

\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)

\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)

Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)

=> 10A>10B

=>A>B

9 tháng 5 2018

k đúng cho mình đi, mình giải cho.

29 tháng 3 2017

Ta có:               A = 2017 / 2018 < 1 + 2018 / 2019 < 1    => A < 1 (1)

Ta lại có :          B = 2017 + 2018 > 2018 + 2016

                   => B =  2017 + 2018 / 2018 + 2016 > 1        => B > 1 (2)

Từ (1) và (2) => A < B

k mik nhé mik đầu tiên!!!!!!!

      

23 tháng 2 2020

\(M=\frac{2018^{2018}+1}{2019^{2019}+1}\)

\(\Leftrightarrow2M=1+\frac{2017}{2018^{2019}+1}\)

\(N=\frac{2018^{2019}-2}{2018^{2020}-2}\)

\(\Leftrightarrow2N=1-\frac{4034}{2018^{2020}-2}\)

Nhận thấy :  \(1+\frac{2017}{2018^{2019}+1}>1-\frac{4034}{2018^{2020}-2}\Leftrightarrow2M>2N\Leftrightarrow M>N\)

23 tháng 2 2020

Từ đề bài, ta suy ra:

So sánh hai biểu thức

\(M=\left(2018^{2018}+1\right)\cdot\left(2018^{2020}-2\right)\)(1)

\(N=\left(2018^{2019}-2\right)\cdot\left(2018^{2019}+1\right)\)(2)

Xét biểu thức M và N, ta suy ra:

\(M=\left(2018^{2019}-2017\right)\cdot\left(2019^{2019}+2016\right)\)

\(N=\left(2018^{2019}-2017\right)\cdot\left(2018^{2018}-2016\right)\)

Nhận thấy (20192019+2016)>(20182018-2016) nên M>N

Vậy M>N.

P/s:Mình đây không phải top 10 tuần nên bài có thể sai sót, mong bạn tham khảo:)))

26 tháng 5 2017

Bạn vào trang Wolfram Alpha sẽ thấy:

20182017 có 6667 chữ số

20172018 có 6669 chữ số

Vậy 20182017 < 20172018

26 tháng 5 2017

Mk cần lời giải rõ ràng , mọi người giúp mk nha