K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2020

p=1 rồi kìa

18 tháng 1 2020

Xl n mk viết nhầm

18 tháng 1 2020

Theo bài ra, ta có:  \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\) \(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Ta có: \(P=\frac{2017x+2018y-2019z}{2017x-2018y+2019z}=\frac{2017.3k+2018.4k-2019.5k}{2017.3k-2018.4k+2019.5k}\)

\(P=\frac{6051k+8072k-10095k}{6051k-8072k+10095k}=\frac{k\left(6051+8072-10095\right)}{k\left(6051-8072+10095\right)}=\frac{4028}{8074}=\frac{2014}{4037}\)

Ta có:Đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Thay vào đề bài

\(\Rightarrow P=\frac{2017x+2018y-2019z}{2017x-2018y+2019z}=\frac{2017.3.k+2018.4.k-2019.5.k}{2017.3.k-2018.4.k+2019.5.k}=\frac{4028k}{8074k}=\frac{2014}{4037}\)

                                                   Vậy\(P=\frac{2014}{4037}\)

18 tháng 2 2020

Ta có:Vì x,y,z tỉ lệ với 3,4,5 nên

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Do đó đặt:\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)

Thay vào P

\(\Rightarrow P=\frac{2017.3.k+2018.4.k-2019.5.k}{2017.3.k-2018.4.k+2019.5.k}=\frac{4028.k}{8074.k}=\frac{2014}{4037}\)

Vậy\(P=\frac{2014}{4037}\)

1 tháng 5 2018

Ta có : x - 1 = 2018 - 1 = 2017 

N = x6 - 2017x5 - 2017x4 - 2017x3 - 2017x2 - 2017x - 2017

N = x6 - ( x - 1 ).x5 - ( x - 1 ).x4 - ( x - 1 ).x3 - ( x - 1 ).x2 - ( x - 1 ).x - ( x - 1 )

N = x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x + 1

N = 1

14 tháng 7 2017

Ta có:

\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)

\(=x^6-2016x^5-x^5+2016x^4+x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2017\)

\(=x^5\left(x-2016\right)-x^4\left(x-2016\right)+x^3\left(x-2016\right)-x^2\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+1\)

Thay x = 2016 vào ta được giá trị biểu thức trên = 1

Hok tốt!

10 tháng 5 2017

Ta có:

   \(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)

\(=x^6-2016x^5-x^5+2016x^4+x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2017\)

\(=x^5\left(x-2016\right)-x^4\left(x-2016\right)+x^3\left(x-2016\right)-x^2\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+1\)

Thay x = 2016 vào ta được giá trị biểu thức trên bằng 1

10 tháng 5 2017

\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\) (1)

Thay 2017 = x+1 vào  (1) ,có :

\(x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\) 

\(x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)  

= 1

9 tháng 5 2017

f(2016)=2016- 2017*20167 +2017*20166 - 2017*20165 +...+2017*20162 - 2017*2016+ 2018

         =20168 -( 20168 + 2016) + (20167+2016) - (20166 + 2016)+....+20163+2016 -( 20162 + 2016)+2018

         =2018

9 tháng 5 2017

Thay x=2016 thì 2017=x+1 và 2018=x+2 Do đó

\(f\left(x\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-...-\left(x+1\right)x\)\(+x+2\)

           \(=x^8-x^8-x^7+x^7+x^6-...+x^2-x^2-x+x+2\)

            \(=2\)

NV
26 tháng 3 2019

a/ Với \(x=2016\Rightarrow2017=x+1\)

\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2025\)

\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2025\)

\(A=2025-x=9\)

b/ Với \(x=-1\Rightarrow\left\{{}\begin{matrix}x^{2k}=1\\x^{2k+1}=-1\end{matrix}\right.\) ta có:

\(Q=2017-2016+2015-2014+...+3-2+1\)

\(Q=1+1+1+...+1+1\) (có \(\frac{2016}{2}+1=1009\) số 1)

\(Q=1009\)